斐波那契数列的最优算法(O(logN))

本文介绍了如何利用线性代数中的矩阵乘法将斐波那契数列的计算时间复杂度降低到O(logN)。通过矩阵的快速幂运算,实现了从递归和迭代解法到高效率的转换,详细阐述了算法的原理和实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  相信大家都对斐波那契数列已经相当的熟悉了,最多两分钟就可以写出来以下时间复杂度为O(N)的代码:

//递归实现
long long fib(int n)
{
	if (n =1 || n== 2)
	{
		return 1;
	}
	return (fib(n - 2) + fib(n - 1));
}

或者是这样的时间复杂度为O(N),空间复杂度为O(1):

//优化一:时间复杂度为O(N)
long long fib(int n)
{
	long long* fibarry = new long long[n + 1];
	fibarry[0] = 0;
	fibarry[1] = 1;
	for (int i = 2; i <= n; i++)
	{
		fibarry[i] = fibarry[i - 1] + fibarry[i - 2];
	}
	long long ret = fibarry[n];
	delete fibarry;
	return ret;
}
//优化二:时间复杂度O(N)  空间复杂度O(1)
long long fib(int n)
{
	long long fibarry[3] = { 0, 1, 0 };
	for (int i = 2; i <= n; i++)
	{
		fibarry[2] = fibarry[0] + fibarry[1];
		fibarry[0] = fibarry[1];
		fibarry[1] = fibarry[2];
	}
	return fibarry[2];

}

 等等这些都是不错算法,都可以实现斐波那契数列的求解,但是

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值