朴素贝叶斯(Naive Bayes)
学习目标:
掌握贝叶斯公式
结合两个实例了解贝朴素叶斯的参数估计
掌握贝叶斯估计
学习内容:
1.2 朴素贝叶斯的介绍
朴素贝叶斯算法(Naive Bayes, NB) 是应用最为广泛的分类算法之一。它是基于贝叶斯定义和特征条件独立假设的分类器方法。由于朴素贝叶斯法基于贝叶斯公式计算得到,有着坚实的数学基础,以及稳定的分类效率。NB模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。当年的垃圾邮件分类都是基于朴素贝叶斯分类器识别的。
什么是条件概率,我们从一个摸球的例子来理解。我们有两个桶:灰色桶和
原创
2020-12-17 14:52:04 ·
1287 阅读 ·
0 评论