未出现的子串--动态规划

http://www.rqnoj.cn/Problem_90.html


题目:未出现的子串

问题编号:90

题目描述

[说明]此题中的子数字串,数字并不一定连续出现在母数字串中.比如我们定义1 3 是串1 5 3
的一个子串,但3 5 不是1 5 3 的一个子串.
串1 5 3 的所有子串为:
1
5
3
1 5
5 3
1 3
1 5 3
共7 个.
[题目描述]有一个长度为n 的数字串,其中会出现数字1,2,3,...,q(5<=q<=9).SubRaY 遇到的问
题是,需要求出一个长度最小的串(出现的数字也是1..q),使得该串不是这个数字串的子串.为
了简化问题,你只需要输出这个串的长度即可.
例如对于数字串S=
1 3 5 2 4 1 3 5 2 2 2 2 3 4 1 5 3 2(q=5)
长度为1 和2 的数字子串全出现过,但是你找不出子串S'=4 4 4.因此答案是3
[数据范围]
对于30%的数据,1<=n<=20,q=5
对于100%的数据,1<=n<=100000,5<=q<=9

输入格式

第一行两个数,串长n 和出现的数字的个数q
接下来n 行表示该数字串每一位的数字.

输出格式

未出现的子串的最小长度

样例输入

18 5
1
3
5
2
4
1
3
5
2
2
2
2
3
4
1
5
3
2

样例输出


3


一、思路

f[a[i]] 表示第i个数的最大无缺字串长度

即第i个数后面的 1 2 3 --q都有了,那么长度该数最大无缺长度为2

第j个数后面的 min(f[1]---f[q] ) + 1就是第j个数的最大无缺字串长度


二、算法

f[a[i]] = min(f[j]) + 1 1<=j<=q

1、读入n,q

2、读入每个数

3、动态规划求解

第一重循环: 从n-1倒序

第二重循环:从1-q求最小长度

    f[a[i]] = min + 1; 

4、输出

求出f[1] - f[q]中最小长度min

那么所有-1-q的最大无缺字串长度为min

即长度为1到min的字串都有,而最小缺少的字串长度为 

min + 1


代码如下:

AC


#include <iostream.h>
#include <fstream.h>

int main()
{
	int n, min, q;
	int a[100001], f[10] = {0};
	int i, j, k;
	//ifstream inFile("e:\\test.txt");
	//读入n
	cin>>n>>q;
	//inFile>>n>>q;
	//读入每个节点数
	for (i=1; i<=n; i++)
	{
		cin>>a[i];
		//inFile>>a[i];
	}
	//动态规划求解
	for (i=n; i>=1; i--)
	{
		int min = 100000;
		for (j=1; j<=q; j++)
		{
			min = min>f[j] ? f[j] : min;
		}
		f[a[i]] = min + 1;
	}
	//输出
	min = 1000000;
	for (i=1; i<=q; i++)
	{
		min = min>f[i] ? f[i] : min;
		//cout<<f[i]<< ' ' ;
	}
	cout<<min+1;

	//inFile.close();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值