python3
lei_qi
这个作者很懒,什么都没留下…
展开
-
Jupyter Notebook 快捷键
两种模式Jupyter Notebook 有两种模式,都有对应快捷键两种模式分别是命令模式和编辑模式,完整的快捷键表单可以点看Jupyter菜单栏中的help > Keyboard shortcuts命令模式F: 查找和替换Enter: 进入编辑模式Ctrl+Enter: 运行当前的cellY: 将当前cell切换至code格式M: 将当前cell切换至markdown格式K or Up: 选中上一个cellJ or Down: 选中下一个cellShift+K, Shift+原创 2021-11-22 14:34:36 · 502 阅读 · 0 评论 -
在 Python 中使用队列
在 Python 中使用队列在 Python 中,可以使用以下几种方法实现队列collections包里的deque,对应操作pop()从尾取出appendleft() 从头插入queue包中的queue,对应操作put() 插入get() 取出直接使用list,只要保证只使用pop() 取出insert(0,) 插入或者只使用append() 插入list[0]并且del list[0] 取出两者使用list方法的不同就区别于你把哪个当头,哪个当尾...原创 2021-09-05 14:12:42 · 1061 阅读 · 0 评论 -
牛客网 ACM模式输入输出
#coding=utf-8本题为考试多行输入输出规范示例,无需提交,不计分。import sysif __name__ == "__main__": # 读取第一行的n n = int(sys.stdin.readline().strip()) ans = 0 for i in range(n): # 读取每一行 line = sys.stdin.readline().strip() # 把每一行的数字分隔后转化成int原创 2021-09-01 18:24:33 · 1472 阅读 · 0 评论 -
Python/java/C++ 找出列表中最大的数字(官方解法)
#pythondef max_(lst): if len(lst) == 0: return None if len(lst) == 1: return lst[0] else: sub_max = max_(lst[1:]) return lst[0] if lst[0] > sub_max else sub_max//javaimport java.util.Arrays;public class RecursiveMax { p原创 2021-08-29 20:36:26 · 420 阅读 · 0 评论 -
递归方法python
所谓递归,就是函数调用自身。有以下三个要素:1.,递归算法必须有一个基本结束条件**(最小规模问题的直接解决)**2.递归算法必须能改变状态向基本结束条件演进**(减小问题规模)**3.递归算法必须调用自身**(解决减小了规模的相同问题)**举例子:加法的递归形式def sum(list): # 1. 最小规模问题的直接解决 当list的长度为1的时候直接返回 if len(list) == 1: return list[0] # 3.调用了sum原创 2021-08-29 17:58:39 · 149 阅读 · 0 评论 -
python中栈、队列
栈可以直接使用python 中的列表入栈使用 append出栈使用 pop# 栈stack = [3,4,5,6,7]stack.append(8)# stack [3,4,5,6,7,8]stack.pop() # 8stack# [3,4,5,6,7]队列Python的Queue模块提供一种适用于多线程编程的先进先出(FIFO)容器使用: put() 将元素添加到序列尾端,get()从队列中取出数据并返回该数据内容。from queue import Queue#fr原创 2021-08-29 15:49:05 · 398 阅读 · 0 评论 -
本地debug 调试leetcode 代码(用于研究不懂的题解代码和调试自己的代码)
1.导入包 是对变量解释的包from typing import *2.将代码拷过来#举例 二分查找class Solution: def search(self, nums: List[int], target: int) -> int: low, high = 0, len(nums) -1 while low<= high: mid = (low+high) //2 guess = nums[原创 2021-08-28 20:44:45 · 2659 阅读 · 1 评论 -
解决:ValueError: multi_class must be in (‘ovo‘, ‘ovr‘)
在计算ROC的时候添加参数roc_auc_score(all_labels, all_prob,multi_class=‘ovo’)官方参数解释:multi_class{‘raise’, ‘ovr’, ‘ovo’}, default=’raise’Only used for multiclass targets. Determines the type of configuration to use. The default value raises an error, so either ‘ovr’原创 2021-08-04 13:03:13 · 20716 阅读 · 0 评论 -
解决Bert 报错:AttributeError: ‘str‘ object has no attribute ‘softmax‘
解决Bert 报错:AttributeError: ‘str’ object has no attribute ‘softmax’需要将这里改为:output= self.bert(input_ids = batch_seqs, attention_mask = batch_seq_masks,token_type_ids=batch_seq_segments, labels = labels)loss = output.losslogits = output.logits...原创 2021-08-04 13:00:40 · 2654 阅读 · 3 评论 -
colab 打开 github中的jupyter notebook 文件
colab 打开 github中的jupyter notebook 文件Google Colab可直接从github打开Jupyter notebooks,只需将“http:// github.com/”替换为“https://colab.research.google.com/github/”,就会直接加载到Colab中 。— Google Colab开发团队成员Jake VanderPlas。...原创 2021-07-24 21:13:58 · 1025 阅读 · 0 评论 -
python在 jupyter中添加虚拟环境
成功创建了虚拟环境,但是启动jupyter notebook 之后却找不到虚拟环境。实际上是由于在虚拟环境下缺少kernel.json 文件。解决方法:1.在主环境中安装ipykernel:pip install ipykernel2.在虚拟环境中安装ipykernel:pip install ipykernel3.激活虚拟环境,并将环境写入jupyter notebook 的kernel 中python -m ipykernel install --user --name 环境名称--原创 2021-05-18 10:13:51 · 972 阅读 · 0 评论 -
Pytorch 如何对已经训练好的模型进行微调(Fine Tuning)
开始配置网络,由于ImageNet是识别1000个物体,我们的狗的分类一共只有120,所以需要对模型的最后一层全连接层进行微调,将输出从1000改为120model_ft = models.resnet50(pretrained=True) # 这里自动下载官方的预训练模型,并且将所有的参数层进行冻结for param in model_ft.parameters():param.requires_grad = False这里打印下全连接层的信息print(model_ft.fc)num_fc原创 2021-05-15 20:21:22 · 1845 阅读 · 0 评论 -
linux下将pip的下载站点设置为阿里源,速度超快!
pip config list 查看 pip 配置修改pip config set global.index-url http://mirrors.aliyun.com/pypi/simple/pip config set install.trusted-host mirrors.aliyun.compip config list查看是否已经写入成功原创 2021-04-28 13:34:11 · 866 阅读 · 0 评论 -
PyTorch中的view的用法
PyTorch中的view的用法torch.view(a,b,…),其中参数a=2,参数b=3决表示将一维的向量 重构成2*3维的张量。torch.view(-1)或者torch.view(a,-1).表示-1参数是需要计算机自己计算的。原创 2021-04-26 15:12:55 · 286 阅读 · 0 评论 -
ReduceLROnPlateau pytorch动态修改学习率
ReduceLROnPlateau:这是常用的学习率策略之一。应用本策略时,当特定的度量指标,如训练损失、验证损失或准确率不再变化时,学习率就会改变。通用实践是将学习率的原始值降低为原来的1/2~1/10。ReduceLRInPlateau的实现如下所示。...原创 2021-04-26 14:52:09 · 7411 阅读 · 0 评论 -
在Pytorch中应用权重正则化
L1正则化: 权重系数的绝对值之和被添加到成本中。通常称为权重的L1范数。L2正则化 :所有权重系数的平方和被添加到成本中。通常称为权重的L2范数Pytorch 提供了一种使用L2正则化的简单方法,就是通过在优化器中启用weight_decay 参数:model = Architecturel(10,20,2)opotimizer = torch.optim.Adam(model.parameters(),lr=1e-4,weight_decay=1e-5)参考:Pytorch 深度学习.原创 2021-04-26 14:36:32 · 1170 阅读 · 0 评论 -
requires_grad, grad_fn , grad
requires_grad: 如果需要为张量计算梯度,则为True,否则为False。我们使用pytorch创建tensor时,可以指定requires_grad为True(默认为False),grad_fn: grad_fn用来记录变量是怎么来的,方便计算梯度,y = x*3,grad_fn记录了y由x计算的过程。grad:当执行完了backward()之后,通过x.grad查看x的梯度值...原创 2021-04-25 18:28:59 · 233 阅读 · 0 评论 -
在救援模式配置
在救援模式启用SSH服务下面在救援模式启用SSH服务。首先进入/etc/ssh配置文件目录中。复制sshd_config.anaconda文件,并更改名称为sshd_config# cd /etc/ssh# cp -p sshd_config.anaconda sshd_config下面启动sshd服务:# systemctl start sshd...原创 2021-04-20 20:58:44 · 155 阅读 · 0 评论 -
Pytorh torch.topk() 函数的使用
介绍torch.topk(input, k, dim=None, largest=True, sorted=True, *, out=None) -> (Tensor, LongTensor)功能:返回给定输入张量在给定维度上的前k个最大元素如果没有给出dim,则选择输入的最后一个维度。如果’largest =False’ 则返回最小的k个元素函数返回:返回一个由(值、索引)组成的命名元组,其中索引是原始输入张量中元素的索引如果’sorted=True’则返回从大到小排序之后的元素,以原创 2021-04-11 13:43:22 · 811 阅读 · 0 评论 -
colab ‘cd‘切换目录无效
3、切换当前文件夹Colab中使用pwd,ls等命令都没有问题,就是使用cd命令切换路径时没有任何变化(怀疑人生)import osos.chdir(“drive/…/…”)此处为google drive中的文件路径,drive为之前指定的工作根目录,当然,也可以用相对路径,与普通的cd一样。...原创 2021-04-01 17:18:24 · 5159 阅读 · 2 评论 -
*.tar.bz2 文件压缩与解压命令
tar cvfj BERT_Classify.tar.bz2 ./BERT_classify/原创 2021-04-01 15:41:42 · 481 阅读 · 0 评论 -
限制或增加pytorch的线程个数!指定核数或者满核运行Pytorch!!!
一、限制pytorch 运行的线程数假如我有4个cpu ,但是只想让Pytorch在1个cpu上运行import oscpu_num = 1 # 这里设置成你想运行的CPU个数os.environ ['OMP_NUM_THREADS'] = str(cpu_num)os.environ ['OPENBLAS_NUM_THREADS'] = str(cpu_num)os.environ ['MKL_NUM_THREADS'] = str(cpu_num)os.environ ['VECLIB_原创 2021-03-31 20:07:38 · 15663 阅读 · 6 评论 -
解决安装fasttext 失败 ERROR: Command errored out with exit status 1:
安装 fasttextpip install fasttext报错信息:ERROR: Command errored out with exit status 1: /usr/bin/python -u -c ‘import sys, setuptools, tokenize; sys.argv[0] = ‘"’"’/tmp/pip-install-PeAgGS/fasttext/setup.py’"’"’; file=’"’"’/tmp/pip-install-PeAgGS/fasttext/se原创 2021-03-30 21:18:32 · 2020 阅读 · 1 评论 -
shuffle
sklearn里的shuffle 这个是目前我接触到最好用的shuffle,因为它既可以如2.1一样,打乱一个矩阵,也可以同时打乱两个变量组成的特征与标签,而且随机种子也集成了,总之就是省事。from sklearn.utils import shuffleX,Y = shuffle(X,Y, random_state=1337)...原创 2021-03-29 21:54:51 · 120 阅读 · 0 评论 -
BertTokenizer
from transformers.tokenization_bert import BertTokenizertokenizer = BertTokenizer.from_pretrained("bert-base-uncased")print("词典大小:",tokenizer.vocab_size)text = "the game has gone!unaffable I have a new GPU!"tokens = tokenizer.tokenize(text)print("英原创 2021-03-29 21:27:21 · 2228 阅读 · 0 评论 -
Softmax Sigmoid 区别
Softmax =多类别分类问题=只有一个正确答案=互斥输出(例如手写数字,鸢尾花)Sigmoid =多标签分类问题=多个正确答案=非独占输出(例如胸部X光检查、住院)下图显示了将前馈神经网络的原始输出值(蓝色)通过Sigmoid函数映射为概率(红色)的过程:Softmax函数重复上述过程:Sigmoid函数和Softmax函数得出不同结果。原因在于,Sigmoid函数会分别处理各个原始输出值,因此其结果相互独立,概率总和不一定为1,如图0.37 + 0.77 + 0.48 + 0.91 =原创 2021-03-29 14:44:25 · 135 阅读 · 0 评论 -
NFM
NMF1.动机NMF是2017 提出的一个模型,传统的FM模型仅仅局限于线性表达和二阶交互,无法胜任生活中的复杂数据。作者提出了一种将FM融合进入DNN的策略,通过使用一个特征交叉池化层的结构,使得FM和DNN 进行了完美的衔接。组合了FM的建模低阶特征的交互能力和DNN的学习高阶特征交互和非线性的能力。那么这个是模型是如何做的呢?对比FM 发现变化的只有第三项这里改进的思路就是用一个表达能力更强的函数来替代原来的FM中的二阶隐向量的部分而这个表达能力更强的函数我们使用神经网络来进行替换,原创 2021-03-25 00:25:47 · 131 阅读 · 0 评论 -
创建虚拟环境命令
python -m venv ./phenotagger原创 2021-03-04 15:48:55 · 217 阅读 · 1 评论 -
Python 中 lambda 函数的用法
Python 中 lambda 函数的用法lambda is a minimal function definition that can be used inside an expression.匿名函数lambda:是指一类无需定义标识符(函数名)的函数或子程序。所谓匿名函数,通俗地说就是没有名字的函数,lambda函数没有名字,是一种简单的、在同一行中定义函数的方法。lambda 函数可以接收任意多个参数 (包括可选参数) 并且返回单个表达式的值。语法lambda arg1,arg2,arg原创 2021-03-13 19:29:40 · 393 阅读 · 0 评论