/* (程序头部注释开始)
* 程序的版权和版本声明部分
* Copyright (c) 2011, 烟台大学计算机学院学生
* All rights reserved.
* 文件名称:实现分数的加法运算
* 程序的版权和版本声明部分
* Copyright (c) 2011, 烟台大学计算机学院学生
* All rights reserved.
* 文件名称:实现分数的加法运算
* 作 者: 雷恒鑫
* 完成日期: 2012 年 09 月08 日
* 版 本 号: V1.0
* 对任务及求解方法的描述部分
* 编程思想:
分数相加,两个分数分别是1/5和7/20,它们相加后得11/20。方法是先求出两个分数分母的最小公倍数,通分后,再求两个分子的和,最后约简结果分数的分子和分母(如果两个分数相加的结果是4/8,则必须将其化简成最简分数的形式1/2),即用分子分母的最大公约数分别除分子和分母。请用四个对话框顺序输入分子和分母,在控制台上输出其运算结果。
* 输入描述:
* 问题描述:
* 程序输出:
* 程序头部的注释结束
*/
package com.ytu.edu.experiment;
public class experiment {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
fracAdd(1,5,7,20);//结果为:11/20
//fracSub(1,5,7,20);//分数相减
//fracMul(1,5,7,20);//分数相乘
//fractDiv(1,5,7,20);//分数相除
}
static void fracAdd(int first_numerator,int first_denominator,int second_numrator,int second_denominator){
//以下代码能够在控制台上显示结果
int numerator,demominator,Least_common_multiple,Greatest_common_divisor;
//需要调用求最小公倍数的函数
Least_common_multiple = lcm(first_denominator,second_denominator);//求出最小公倍数
numerator = (Least_common_multiple/first_denominator)*first_numerator + (Least_common_multiple/second_denominator)*second_numrator;//求出两分数相加后的分子
//需要调用求最大公约数的函数
Greatest_common_divisor = gcd(Least_common_multiple,numerator);//求出最大公约数
numerator = numerator / Greatest_common_divisor;//求出化简后的分子
demominator =Least_common_multiple / Greatest_common_divisor;//求出化简后的分母
System.out.println(first_numerator+"/"+first_denominator+"+"+second_numrator+"/"+second_denominator+"="+numerator+"/"+demominator);//输出相加化简后的分数
}
static int gcd(int m,int n){
int i = 2;//定义循环控制变量
int Least_common_multiple = 1;//求最大公约数
int min = min(m,n);
while(i<=min)
{
while(m%i==0&&n%i==0)//求分子分母共同的公约数
{
m=m/i;
n=n/i;
min = min(m,n);
Least_common_multiple = Least_common_multiple * i;
}
++i;
}
return Least_common_multiple;
}
static int lcm(int m,int n){
int Greatest_common_divisor = gcd(m,n);//求最大公约数
int Least_common_multiple =(m/Greatest_common_divisor)*(n/Greatest_common_divisor)*Greatest_common_divisor;//最小公倍数与最大公约数有一定关系
return Least_common_multiple;
}
static int min(int m,int n){
int min;
if(m>n)
{
min=n;
}
else
{
min = m;
}
return min;
}
}
运行结果:
经验积累:
1.以前用C++编过此程序,现在用JAVA编程感觉很顺手。
package test_one;
public class fenshu {
/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
// TODO Auto-generated method stub
fracAdd(1, 5, 7, 20);// 结果为:11/20
fracSub(1, 5, 7, 20);// 分数相减
fracMul(1, 5, 7, 20);// 分数相乘
fractDiv(1, 5, 7, 20);// 分数相除
}
static void fracAdd(int first_numerator, int first_denominator,
int second_numrator, int second_denominator) {
// 以下代码能够在控制台上显示结果
int numerator, demominator, Least_common_multiple, Greatest_common_divisor;
// 需要调用求最小公倍数的函数
Least_common_multiple = lcm(first_denominator, second_denominator);// 求出最小公倍数
numerator = (Least_common_multiple / first_denominator)
* first_numerator
+ (Least_common_multiple / second_denominator)
* second_numrator;// 求出两分数相加后的分子
// 需要调用求最大公约数的函数
Greatest_common_divisor = gcd(Least_common_multiple, numerator);// 求出最大公约数
numerator = numerator / Greatest_common_divisor;// 求出化简后的分子
demominator = Least_common_multiple / Greatest_common_divisor;// 求出化简后的分母
System.out.println(first_numerator + "/" + first_denominator + "+"
+ second_numrator + "/" + second_denominator + "=" + numerator
+ "/" + demominator);// 输出相加化简后的分数
}
static void fracSub(int first_numerator, int first_denominator,// 分数相减
int second_numrator, int second_denominator) {
// 以下代码能够在控制台上显示结果
int numerator, demominator, Least_common_multiple, Greatest_common_divisor;
// 需要调用求最小公倍数的函数
Least_common_multiple = lcm(first_denominator, second_denominator);// 求出最小公倍数
numerator = (Least_common_multiple / first_denominator)
* first_numerator
- (Least_common_multiple / second_denominator)
* second_numrator;// 求出两分数相加后的分子
// 需要调用求最大公约数的函数
Greatest_common_divisor = gcd(Least_common_multiple, numerator);// 求出最大公约数
numerator = numerator / Greatest_common_divisor;// 求出化简后的分子
demominator = Least_common_multiple / Greatest_common_divisor;// 求出化简后的分母
System.out.println(first_numerator + "/" + first_denominator + "-"
+ second_numrator + "/" + second_denominator + "=" + numerator
+ "/" + demominator);// 输出相加化简后的分数
}
static void fracMul(int first_numerator, int first_denominator,// 分数相乘
int second_numrator, int second_denominator) {
// 以下代码能够在控制台上显示结果
int numerator, demominator;
numerator = first_numerator * second_numrator;
demominator = first_denominator* second_denominator;
Simplification(numerator,demominator);
}
static void fractDiv(int first_numerator, int first_denominator,// 分数相除
int second_numrator, int second_denominator) {
// 以下代码能够在控制台上显示结果
fracMul(first_numerator, first_denominator,// 分数相乘
second_denominator, second_numrator);
}
static int gcd(int m, int n) {
int i = 2;// 定义循环控制变量
int Least_common_multiple = 1;// 求最大公约数
int min = min(m, n);
while (i <= min) {
while (m % i == 0 && n % i == 0)// 求分子分母共同的公约数
{
m = m / i;
n = n / i;
min = min(m, n);
Least_common_multiple = Least_common_multiple * i;
}
++i;
}
return Least_common_multiple;
}
static int lcm(int m, int n) {// 求最小公倍数
int Greatest_common_divisor = gcd(m, n);// 求最大公约数
int Least_common_multiple = (m / Greatest_common_divisor)
* (n / Greatest_common_divisor) * Greatest_common_divisor;// 最小公倍数与最大公约数有一定关系
return Least_common_multiple;
}
static int min(int m, int n) {
int min;
if (m > n) {
min = n;
} else {
min = m;
}
return min;
}
static void Simplification(int numerator,int denominator)
{
int i = 2;// 定义循环控制变量
int Least_common_multiple = 1;// 求最大公约数
int min = min(numerator, denominator);
while (i <= min) {
while (numerator % i == 0 && denominator % i == 0)// 求分子分母共同的公约数
{
numerator = numerator / i;
denominator = denominator / i;
min = min(numerator, denominator);
Least_common_multiple = Least_common_multiple * i;
}
++i;
}
System.out.println(numerator + "/" + denominator );// 输出相加化简后的分数
}
}
运行结果:
经验积累:
声明为静态函数可以不创建对象直接调用。