JAVA--第三周实验--任务1--实现分数的加法运算(编程思想)

/* (程序头部注释开始)
* 程序的版权和版本声明部分
* Copyright (c) 2011, 烟台大学计算机学院学生
* All rights reserved.
* 文件名称:实现分数的加法运算

* 作 者: 雷恒鑫
* 完成日期: 2012 年 09 月08 日
* 版 本 号: V1.0
* 对任务及求解方法的描述部分

* 编程思想:

分数相加,两个分数分别是1/57/20,它们相加后得11/20。方法是先求出两个分数分母的最小公倍数,通分后,再求两个分子的和,最后约简结果分数的分子和分母(如果两个分数相加的结果是4/8,则必须将其化简成最简分数的形式1/2),即用分子分母的最大公约数分别除分子和分母。请用四个对话框顺序输入分子和分母,在控制台上输出其运算结果。

* 输入描述:
* 问题描述:
* 程序输出:

* 程序头部的注释结束

*/

package com.ytu.edu.experiment;

public class experiment {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		fracAdd(1,5,7,20);//结果为:11/20
		//fracSub(1,5,7,20);//分数相减
		//fracMul(1,5,7,20);//分数相乘
		//fractDiv(1,5,7,20);//分数相除
	}
	static void fracAdd(int first_numerator,int first_denominator,int second_numrator,int second_denominator){
		//以下代码能够在控制台上显示结果
		int numerator,demominator,Least_common_multiple,Greatest_common_divisor;
		
		//需要调用求最小公倍数的函数
		Least_common_multiple = lcm(first_denominator,second_denominator);//求出最小公倍数
		numerator = (Least_common_multiple/first_denominator)*first_numerator + (Least_common_multiple/second_denominator)*second_numrator;//求出两分数相加后的分子
		//需要调用求最大公约数的函数
		Greatest_common_divisor = gcd(Least_common_multiple,numerator);//求出最大公约数
		numerator = numerator / Greatest_common_divisor;//求出化简后的分子
		demominator =Least_common_multiple / Greatest_common_divisor;//求出化简后的分母
		System.out.println(first_numerator+"/"+first_denominator+"+"+second_numrator+"/"+second_denominator+"="+numerator+"/"+demominator);//输出相加化简后的分数
	}
	static int gcd(int m,int n){
		int i = 2;//定义循环控制变量
		int Least_common_multiple = 1;//求最大公约数
		int min = min(m,n);
		while(i<=min)
		{
			while(m%i==0&&n%i==0)//求分子分母共同的公约数
			{
				m=m/i;
				n=n/i;
				min = min(m,n);
				Least_common_multiple = Least_common_multiple * i;
			}
			++i;
		}
		return Least_common_multiple;
		
	}
	static int lcm(int m,int n){
		int Greatest_common_divisor = gcd(m,n);//求最大公约数
		int Least_common_multiple =(m/Greatest_common_divisor)*(n/Greatest_common_divisor)*Greatest_common_divisor;//最小公倍数与最大公约数有一定关系
		return Least_common_multiple;
	}
	static int min(int m,int n){
		int min;
		if(m>n)
		{
			min=n;
		}
		else
		{
			min = m;
		}
		return min;
		
	}

}


运行结果:

 

 

经验积累:

 

1.以前用C++编过此程序,现在用JAVA编程感觉很顺手。

 

package test_one;

public class fenshu {

	/**
	 * @param args
	 */
	public static void main(String[] args) {
		// TODO Auto-generated method stub
		// TODO Auto-generated method stub
		fracAdd(1, 5, 7, 20);// 结果为:11/20
		fracSub(1, 5, 7, 20);// 分数相减
		fracMul(1, 5, 7, 20);// 分数相乘
		fractDiv(1, 5, 7, 20);// 分数相除

	}

	static void fracAdd(int first_numerator, int first_denominator,
			int second_numrator, int second_denominator) {
		// 以下代码能够在控制台上显示结果
		int numerator, demominator, Least_common_multiple, Greatest_common_divisor;

		// 需要调用求最小公倍数的函数
		Least_common_multiple = lcm(first_denominator, second_denominator);// 求出最小公倍数
		numerator = (Least_common_multiple / first_denominator)
				* first_numerator
				+ (Least_common_multiple / second_denominator)
				* second_numrator;// 求出两分数相加后的分子
		// 需要调用求最大公约数的函数
		Greatest_common_divisor = gcd(Least_common_multiple, numerator);// 求出最大公约数
		numerator = numerator / Greatest_common_divisor;// 求出化简后的分子
		demominator = Least_common_multiple / Greatest_common_divisor;// 求出化简后的分母
		System.out.println(first_numerator + "/" + first_denominator + "+"
				+ second_numrator + "/" + second_denominator + "=" + numerator
				+ "/" + demominator);// 输出相加化简后的分数
	}

	static void fracSub(int first_numerator, int first_denominator,// 分数相减
			int second_numrator, int second_denominator) {
		// 以下代码能够在控制台上显示结果
		int numerator, demominator, Least_common_multiple, Greatest_common_divisor;

		// 需要调用求最小公倍数的函数
		Least_common_multiple = lcm(first_denominator, second_denominator);// 求出最小公倍数
		numerator = (Least_common_multiple / first_denominator)
				* first_numerator
				- (Least_common_multiple / second_denominator)
				* second_numrator;// 求出两分数相加后的分子
		// 需要调用求最大公约数的函数
		Greatest_common_divisor = gcd(Least_common_multiple, numerator);// 求出最大公约数
		numerator = numerator / Greatest_common_divisor;// 求出化简后的分子
		demominator = Least_common_multiple / Greatest_common_divisor;// 求出化简后的分母
		System.out.println(first_numerator + "/" + first_denominator + "-"
				+ second_numrator + "/" + second_denominator + "=" + numerator
				+ "/" + demominator);// 输出相加化简后的分数
	}

	static void fracMul(int first_numerator, int first_denominator,// 分数相乘
			int second_numrator, int second_denominator) {
		// 以下代码能够在控制台上显示结果
		int numerator, demominator;
		numerator = first_numerator * second_numrator;
		demominator = first_denominator* second_denominator;
		
		Simplification(numerator,demominator);
	}

	static void fractDiv(int first_numerator, int first_denominator,// 分数相除
			int second_numrator, int second_denominator) {
		// 以下代码能够在控制台上显示结果
		fracMul(first_numerator, first_denominator,// 分数相乘
				second_denominator,  second_numrator);
	}

	static int gcd(int m, int n) {
		int i = 2;// 定义循环控制变量
		int Least_common_multiple = 1;// 求最大公约数
		int min = min(m, n);
		while (i <= min) {
			while (m % i == 0 && n % i == 0)// 求分子分母共同的公约数
			{
				m = m / i;
				n = n / i;
				min = min(m, n);
				Least_common_multiple = Least_common_multiple * i;
			}
			++i;
		}
		return Least_common_multiple;

	}

	static int lcm(int m, int n) {// 求最小公倍数
		int Greatest_common_divisor = gcd(m, n);// 求最大公约数
		int Least_common_multiple = (m / Greatest_common_divisor)
				* (n / Greatest_common_divisor) * Greatest_common_divisor;// 最小公倍数与最大公约数有一定关系
		return Least_common_multiple;
	}

	static int min(int m, int n) {
		int min;
		if (m > n) {
			min = n;
		} else {
			min = m;
		}
		return min;

	}
	static void Simplification(int numerator,int denominator)
	{
		int i = 2;// 定义循环控制变量
		int Least_common_multiple = 1;// 求最大公约数
		int min = min(numerator, denominator);
		while (i <= min) {
			while (numerator % i == 0 && denominator % i == 0)// 求分子分母共同的公约数
			{
				numerator = numerator / i;
				denominator = denominator / i;
				min = min(numerator, denominator);
				Least_common_multiple = Least_common_multiple * i;
			}
			++i;
		}
		System.out.println(numerator + "/" + denominator );// 输出相加化简后的分数
		
	}
	
	

}

 

运行结果:

 

 

 

经验积累:

声明为静态函数可以不创建对象直接调用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leihengxin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值