港通医疗深交所上市:年营收7.7亿募资7.8亿 市值41亿

9ecc8f4baceb62a5c7a461487a066c8e.jpeg

雷递网 雷建平 7月25日

四川港通医疗设备集团股份有限公司(简称:“港通医疗”,证券代码:301515)今日在深交所创业板上市。

港通医疗本次发行2500万股,发行价31.16元,新股募集资金7.79亿元。

26b801d847ef7739eaa8864be84649fe.jpeg

港通医疗原计划募资6.6亿元,这意味着港通医疗超募了1亿多。

港通医疗开盘价为37元,较发行价上涨18.7%;收盘价为41.14元,较发行价上涨32%;以收盘价计算,公司市值约38亿元。

年营收7.69亿

187ddcc59294f980a8f78443f780d99f.jpeg

港通医疗是一家现代化的医疗器械研发制造及医疗专业系统整体方案提供商,致力于解决医用气体供应及医疗感染问题,为各类医疗机构提供生命支持系统和生命支持区域,主营业务为医用气体装备及系统、医用洁净装备及系统的研发、设计、制造、集成及运维服务。

f8bf864d15bb9d9805b733b252cf6fd5.jpeg

招股书显示,港通医疗2020年、2021年、2022年营收分别为5.62亿元、6.81亿元、7.69亿元;净利分别为6528.8万元、7167.84万元、7391万元;扣非后净利分别为5900万元、6535.3万元、7042万元。

港通医疗2023年第一季营收7087.4万,较上年同期的5722.5万增23.85%;净利为609.8万元,上年同期的净利为182万元;扣非后净利为529.56万元,上年同期的净利为114.3万元。

陈永夫妇为实控人

IPO前,陈永持股37.03%,胡世红持股0.68%,GTSouth持股15.33%,苏州凯辉持股4.98%,汪道清持股为3.65%,樊雄然持股为3.34%;

文再敏持股为2.87%,嘉兴国和持股为2.67%,魏勇持股为2.62%,陈良平持股为2.24%,厦门冠亚持股为2%,朱民持股为1.83%。

彭健持股为1.43%,王仲春持股为1.34%,吕伟持股为1.23%,陈兴根持股为1.2%,涂代荣、卢汝正分别持股为1.17%,刘承元持股为1.15%,施文聪持股为1.13%,曾爱民持股为1.05%,刘晓枫持股为1.01%,王文昊持股为1%,陈明元持股为0.89%,刘煜强持股为0.83%,岳锋持股为0.8%,胡世俊持股为0.76%,江轲培持股为0.67%,白前学持股为0.61%。

其中,陈永与胡世红系夫妻关系,为公司共同实际控制人。

2b28c5ad3638891ec533cc6ecd004d31.jpeg

胡世俊和胡世红为兄妹关系,胡世俊持有0.76%股权;刘晓枫、陈明元为胡世红姐妹的配偶,分别持有1.01%、0.89%股权;华宗彬和华宗建二人为兄弟关系,华盛与华宗彬、华宗建为叔侄关系,均持有0.16%股权。

7ab8fcbfe02a81fd96707c08216b6e6b.jpeg

IPO后,陈永持股27.77%,胡世红持股0.51%,GTSouth持股为11.5%,苏州凯辉持股为3.74%,汪道清持股为2.74%,樊雄然持股为2.5%;

文再敏持股为2.15%,嘉兴国和持股为2%,魏勇持股为1.96%,陈良平持股为1.68%,厦门冠亚持股为1.5%,朱民持股为1.37%;

彭健持股为1.07%,王仲春持股为1%,吕伟持股为0.92%,陈兴根持股为0.9%,涂代荣、卢汝正分别持股为0.88%,刘承元持股为0.86%,施文聪持股为0.85%,曾爱民持股为0.79%,刘晓枫持股为0.76%;

王文昊持股为0.75%,陈明元持股为0.67%,刘煜强持股为0.62%,岳锋持股为0.6%,胡世俊持股为0.57%,江轲培持股为0.51%。

———————————————

雷递由媒体人雷建平创办,若转载请写明来源。

8a20d453fe8b85e673ee9c2a2174d7f2.jpeg

3446b30d4d1f07591a2d29ef9e595670.jpeg

【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值