排列组合的实现

实现排列组合查询算法



作者:    文章来源:
发布日期:2005年01月01日    浏览次数:1次
所谓的排列组合查询就相当于GOOGLE高级查询中“包含以下全部的字词”查询,也就是说查询中必须包含所有查询关键词,而且他们的顺序可以是任意。以下程序段实现了这一功能。比如输入查询关键字:tom tina则最一般的情况是在程序中使用类似于"select sex from student where name like '%tom%tina%' or name like '%tina%tom%' ordered by age" 的查询语句实现以上的查询,因此如何得到'%tina%tom%' 和'%tom%tina%' 就是该程序和算法要实现的.

首先想到的就是写出一个排列组合的算法,然后用该算法输出所要查询关键字的所有情况,比如 我输入了以下几个关键字: EGG APPLE TIME 则要写一个程序输出 这3个单词的所有排列情况,比如:EGG APPLE TIME 情况2 EGG TIME APPLE, 情况3 APPLE EGG TIME......不用说,大家一看就知道应该是3的阶乘种情况也就是1*2*3这里就不一一列出了。

写出一段程序,或者一个函数比如: public String paileizuhe(String inputstr){......} 该函数返回一个排列组合好的QUERY字符串,比如使用该函数并赋予他两个字符串参数(tom,tina)则:public String pailiezuhe("tom","tina");则输出: "select sex from student where name like '%tom%tina%' or name like '%tina%tom%' ordered by age "  这里,我们关心的是如何生成tom tina 的组合即'%tina%tom%' 和'%tom%tina%' 至于生成整个如上的字符串是非常简单的只要用StringBuffer将那些常量悬挂起来最后组合一下就可以了.以下程序给出了排列组合输出的实现:

import java.math.BigInteger;
import java.util.*;

public class PermutationGenerator {

    private int[] a;
    private BigInteger numLeft;
    private BigInteger total;
    public PermutationGenerator(int n) {
        if (n < 1) {
            throw new IllegalArgumentException("Min 1");
        }
        a = new int[n];
        total = getFactorial(n);
        reset();
    }

    //------
    // Reset
    //------

    public void reset() {
        for (int i = 0; i < a.length; i++) {
            a[i] = i;
        }
        numLeft = new BigInteger(total.toString());
    }

    //------------------------------------------------
    // Return number of permutations not yet generated
    //------------------------------------------------

    public BigInteger getNumLeft() {
        return numLeft;
    }

    //------------------------------------
    // Return total number of permutations
    //------------------------------------

    public BigInteger getTotal() {
        return total;
    }

    //-----------------------------
    // Are there more permutations?
    //-----------------------------

    public boolean hasMore() {
        return numLeft.compareTo(BigInteger.ZERO) == 1;
    }

    //------------------
    // Compute factorial
    //------------------

    private static BigInteger getFactorial(int n) {
        BigInteger fact = BigInteger.ONE;
        for (int i = n; i > 1; i--) {
            fact = fact.multiply(new BigInteger(Integer.toString(i)));
        }
        return fact;
    }

    //--------------------------------------------------------
    // Generate next permutation (algorithm from Rosen p. 284)
    //--------------------------------------------------------

    public int[] getNext() {

        if (numLeft.equals(total)) {
            numLeft = numLeft.subtract(BigInteger.ONE);
            return a;
        }

        int temp;

        // Find largest index j with a[j] < a[j+1]

        int j = a.length - 2;
        while (a[j] > a[j + 1]) {
            j--;
        }

        // Find index k such that a[k] is smallest integer
        // greater than a[j] to the right of a[j]

        int k = a.length - 1;
        while (a[j] > a[k]) {
            k--;
        }

        // Interchange a[j] and a[k]

        temp = a[k];
        a[k] = a[j];
        a[j] = temp;

        // Put tail end of permutation after jth position in increasing order

        int r = a.length - 1;
        int s = j + 1;

        while (r > s) {
            temp = a[s];
            a[s] = a[r];
            a[r] = temp;
            r--;
            s++;
        }

        numLeft = numLeft.subtract(BigInteger.ONE);
        return a;

    }
//程序测试入口
    public static void main(String[] args) {

        int[] indices;
        String[] elements = { "1", "2", "3" };
        PermutationGenerator x = new PermutationGenerator(elements.length);
        StringBuffer permutation;

        while (x.hasMore()) {
            permutation = new StringBuffer("%");
            indices = x.getNext();
            for (int i = 0; i < indices.length; i++) {
                permutation.append(elements[indices[i]]).append("%");
            }
            System.out.println(permutation.toString());

        }
    }

}

可以看到我们输入1 2 3 得到了他门所有的排列组合:
%1%2%3%
%1%3%2%
%2%1%3%
%2%3%1%
%3%1%2%
%3%2%1%
由此,我们可以很轻易的得到给定关键字的排列组合了.
需要注意的是,如果查询是输入关键字过多,比如5个则会有120中的组合,6个是720种,要是10个以上的话......所以该算法不适合很多关键字的全排列查询.

当然我的思路是最土和直接的,远不如GOOGLE,只是一种实现而已,如果文章对诸位有所帮助,便起到了作用。谁有更好的方法希望您也能共享出来。


Jegg
java-j2se-algorithm

共享就是力量!
 
 
 
 

  public void inductionExcelData(String companyid, String fileid, String fileRealPath)
  {
    try
    {
      UploadDAO uploadDAO = new UploadDAO();
      Workbook book = Workbook.getWorkbook(new File(fileRealPath + "/upload/file/" + uploadDAO.getFileName(fileid)));
      Sheet sheet = book.getSheet(0);
      int rowNum = sheet.getRows();
      Cell cell = null;
      String[] objtext = new String[5];
      RecordSet rscompanyusered = this.userDAO.getRecordSetByCompanyId(companyid);

      for (int i = 1; i < rowNum; i++) {
        for (int j = 0; j < 5; j++) {
          cell = sheet.getCell(j, i);
          objtext[j] = cell.getContents().trim();
        }
        if (objtext[2].indexOf("男") >= 0)
          objtext[2] = "1";
        else {
          objtext[2] = "2";
        }
        objtext[3] = StringUtils.getStringDate2String9(objtext[3]);
        if (!StringUtils.dataisright(objtext[0]))
        {
          continue;
        }
        if (validatorMobile(objtext[0], rscompanyusered))
          this.userDAO.insertCompanyUser(objtext[0], objtext[1], companyid, objtext[2], objtext[3], objtext[4]);
      }
    }
    catch (Exception e) {
      e.printStackTrace();
    }
  }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值