1、需要工具包
pandas包
下载pandas包:pip install pandas
在 python脚本中调出pandas包,并命名为pd: import pandas as pd
2、数据说明
excel中数据是这样的:
3、开始读取数据
发现数据来源Excel中存在表头,在读数时考虑去除掉表头。读数时加入skiprows=1,即读数时跳过一行。
结果如下:
由于数据在Excel中存在合并的情况,所以读出的数据存在空值,采用fillna()进行填充。【data.fillna(method = 'ffill')这表示用前一个观测值填充;data.fillna(method = 'bfill')表示用后一个值进行填充;data.fillna({'x1':1,'x2':2,'x3':3})表示使用常量进行填充不同的列,也可以使用均值或中位数进行填充相应的列】
运行结果如下:
可见app那一列都进行了用前一个观测值填充。
为了便于操作,将数据转化为Dataframe的形式:
df = pd.DataFrame(data)
df1 = df[['日期','app','安全下载量','普通下载量']]
如何只选取app为‘cc’的数据呢?你只需要这样
限制app = ‘cc’,结果将只有‘cc’的数据,看结果~(可以根据自己需要处理的数据进行选择)
如果我只要app=‘cc’的20181010的数据,该如何选择呢?在一个限制的基础上再加一个限制;
df3 = df1.loc[df1['app'] == 'cc'].loc[df1['日期'] == 20181010]
看看结果:结果是想要的20181010且app=‘cc’的记录。
表中有两个数据列,安全下载量与普通下载量,如果只想分析安全下载量,该如何选取?
datalist = df1[['日期','app','安全下载量']]
print(datalist)
内容超级简单~,作为激励第一步。