n皇后2和n皇后1的思路都是一样的,在写2的时候,一个对角线的判断出了问题,还没看出来,卡了半天。。。
思路:放置条件为判断列、左对角线、右对角线是否可用,不用判断行是否可用(当前的行在放置一个点之后就会结束在当前和的循环,进入下一个行,不会再出现同一行的情况)
先判断当前位置是否可放,放置皇后,更改列、左右对角线的限制条件,再判断是否皇后的数量是否到n,到n,则计数加1,不到n,则通过backtrack来进行下一行的判断 ;
当不能放置的时候,再判断当前行的下一个位置是否满足条件
class Solution:
def totalNQueens(self, n: int) -> int:
def could_place(col, row):
return not (cols[col] + right_diagonals[row - col] + left_diagonals[col + row])
def place_queen(col, row):
cols[col] = 1
right_diagonals[row - col] = 1
left_diagonals[col + row] = 1
def remove_queen(col, row):
cols[col] = 0
right_diagonals[row - col] = 0
left_diagonals[col + row] = 0
def backtrack(row = 0, count = 0):
for col in range(n):
if could_place(col, row):
place_queen(col, row)
if row == n - 1:
count += 1
# print(count)
else:
count = backtrack(row + 1, count)
remove_queen(col, row)
return count
# count = 0
cols = [0] * n
right_diagonals = [0] * (n * 2 - 1)
left_diagonals = [0] * (n * 2 - 1)
return backtrack()