06 Lambda 表达式(Datawhale)

资料参考于[1]

1. 匿名函数的定义

(1)在 Python 里有两类函数:
第一类:用 def 关键词定义的正规函数
第二类:用 lambda 关键词定义的匿名函数

(2)匿名函数的创建
语法结构如下:

lambda argument_list: expression

lambda - 定义匿名函数的关键词。
argument_list - 函数参数,它们可以是位置参数、默认参数、关键字参数,和正规函数里的参数类型一样。
:- 冒号,在函数参数和表达式中间要加个冒号。
expression - 只是一个表达式,输入函数参数,输出一些值。

def sqr(x):
    return x ** 2
print(sqr)
# <function sqr at 0x000000BABD3A4400>
print(sqr(2))
# 4
y = [sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

lbd_sqr = lambda x: x ** 2
print(lbd_sqr)
# <function <lambda> at 0x000000BABB6AC1E0>
y = [lbd_sqr(x) for x in range(10)]
print(y)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
print(lbd_sqr(5))
# 25
sumary = lambda arg1, arg2: arg1 + arg2
print(sumary(10, 20))  # 30

func = lambda *args: sum(args)
print(func(1, 2, 3, 4, 5))  # 15

上面的例子分别使用了两类函数,正规函数和匿名函数
第一个例子出现了定义函数、直接打印、代入实参、代入for实参
第二个例子出现了定义函数、直接打印、代入for实参、代入实参
第三个例子出现了定义函数,代入实参、可变参数
注意:
expression 中没有 return 语句,因为 lambda 不需要它来返回,表达式本身结果就是返回值。
匿名函数拥有自己的命名空间,且不能访问自己参数列表之外或全局命名空间里的参数

2. 匿名函数的应用

函数式编程是指代码中每一块都是不可变的,都由纯函数的形式组成。
这里的纯函数,是指函数本身相互独立、互不影响,对于相同的输入,总会有相同的输出,没有任何副作用。
非函数编程:

def f(x):
    for i in range(0, len(x)):
        x[i] += 10
    return x
x = [1, 2, 3]
f(x)
print(x)
# [11, 12, 13]

函数编程:

def f(x):
    y = []
    for item in x:
        y.append(item + 10)
    return y
x = [1, 2, 3]
f(x)
print(x)
# [1, 2, 3]

匿名函数 常常应用于函数式编程的高阶函数 (high-order function)中,主要有两种形式:
参数是函数 (filter, map)
返回值是函数 (closure)
如,在 filtermap函数中的应用:
filter(function, iterable) 过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

odd = lambda x: x % 2 == 1
templist = filter(odd, [1, 2, 3, 4, 5, 6, 7, 8, 9])
print(list(templist))  # [1, 3, 5, 7, 9]

map(function, *iterables) 根据提供的函数对指定序列做映射。

m1 = map(lambda x: x ** 2, [1, 2, 3, 4, 5])
print(list(m1))  
# [1, 4, 9, 16, 25]

m2 = map(lambda x, y: x + y, [1, 3, 5, 7, 9], [2, 4, 6, 8, 10])
print(list(m2))  
# [3, 7, 11, 15, 19]

[1]https://github.com/datawhalechina/team-learning-program/blob/master/PythonLanguage/12.%20%E5%87%BD%E6%95%B0%E4%B8%8ELambda%E8%A1%A8%E8%BE%BE%E5%BC%8F.md

©️2020 CSDN 皮肤主题: 1024 设计师:上身试试 返回首页