题目描述
给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。
如果存在一个整数 x 使得 n = = 2 x n == 2^x n==2x ,则认为 n 是 2 的幂次方。
示例1:
输入: n = 1
输出: true
解释: 2 0 = 1 2^0=1 20=1
示例2:
输入: n = 16
输出: true
解释: 2 4 = 16 2^4=16 24=16
示例3:
输入: n = 3
输出: false
示例4:
输入: n = 4
输出: true
示例5:
输入: n = 5
输出: false
提示
- − 2 31 < = n < = 2 31 − 1 -2^{31} <= n <= 2^{31} - 1 −231<=n<=231−1
方法一:二进制表示
解题思路
n 是 2 的幂,则 n 的二进制表示中只有 1 个 1。
n & (n - 1),可以将 n 的二进制表示的最低位的 1 变为 0
如果 n > 0,然后通过 n & (n - 1) 后,二进制表示中没有 1,值为 0,则 n 是 2 的幂。
n & -n,可以获得 n 的二进制表示的最低位的 1
如果 n > 0,而且 n & -n 仍然等于 n 本身,只有 1 位 1,则 n 是 2 的幂。
代码
class Solution {
public:
bool isPowerOfTwo(int n) {
return n > 0 && (n & (n - 1)) == 0;
}
};
class Solution {
public:
bool isPowerOfTwo(int n) {
return n > 0 && (n & -n) == n;
}
};
复杂度分析
- 时间复杂度:O(1)。
- 空间复杂度:O(1)。
方法二:判断是否为最大 2 的幂的约数
解题思路
因为 n 的取值范围是 − 2 31 < = n < = 2 31 − 1 -2^{31} <= n <= 2^{31} - 1 −231<=n<=231−1,所以在此范围中 2 的最大的幂为 2 30 = 1073741824 2^{30} = 1073741824 230=1073741824。我们只需要判断 n 是否为 2 30 2^{30} 230 的约数。
代码
class Solution {
private:
static constexpr int BIG = 2 << 30;
public:
bool isPowerOfTwo(int n) {
return n > 0 && BIG % n == 0;
}
};
复杂度分析
- 时间复杂度:O(1)。
- 空间复杂度:O(1)。