【位运算】leetcode 231. 2 的幂

231. 2 的幂

题目描述

给你一个整数 n,请你判断该整数是否是 2 的幂次方。如果是,返回 true ;否则,返回 false 。

如果存在一个整数 x 使得 n = = 2 x n == 2^x n==2x ,则认为 n 是 2 的幂次方。

示例1:

输入: n = 1
输出: true
解释: 2 0 = 1 2^0=1 20=1

示例2:

输入: n = 16
输出: true
解释: 2 4 = 16 2^4=16 24=16

示例3:

输入: n = 3
输出: false

示例4:

输入: n = 4
输出: true

示例5:

输入: n = 5
输出: false

提示

  • − 2 31 < = n < = 2 31 − 1 -2^{31} <= n <= 2^{31} - 1 231<=n<=2311

方法一:二进制表示

解题思路

n 是 2 的幂,则 n 的二进制表示中只有 1 个 1。
n & (n - 1),可以将 n 的二进制表示的最低位的 1 变为 0
如果 n > 0,然后通过 n & (n - 1) 后,二进制表示中没有 1,值为 0,则 n 是 2 的幂。
n & -n,可以获得 n 的二进制表示的最低位的 1
如果 n > 0,而且 n & -n 仍然等于 n 本身,只有 1 位 1,则 n 是 2 的幂。

代码

class Solution {
public:
    bool isPowerOfTwo(int n) {
        return n > 0 && (n & (n - 1)) == 0;
    }
};
class Solution {
public:
    bool isPowerOfTwo(int n) {
        return n > 0 && (n & -n) == n;
    }
};

复杂度分析

  • 时间复杂度:O(1)。
  • 空间复杂度:O(1)。

方法二:判断是否为最大 2 的幂的约数

解题思路

因为 n 的取值范围是 − 2 31 < = n < = 2 31 − 1 -2^{31} <= n <= 2^{31} - 1 231<=n<=2311,所以在此范围中 2 的最大的幂为 2 30 = 1073741824 2^{30} = 1073741824 230=1073741824。我们只需要判断 n 是否为 2 30 2^{30} 230 的约数。

代码

class Solution {
private:
    static constexpr int BIG = 2 << 30;
public:
    bool isPowerOfTwo(int n) {
        return n > 0 && BIG % n == 0;
    }
};

复杂度分析

  • 时间复杂度:O(1)。
  • 空间复杂度:O(1)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值