【动态规划】leetcode 213. 打家劫舍 II

213. 打家劫舍 II

题目描述

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警

给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,今晚能够偷窃到的最高金额。

示例1:

输入: nums = [2,3,2]
输出: 3
解释: 你不能先偷窃 1 号房屋(金额 = 2),然后偷窃 3 号房屋(金额 = 2), 因为他们是相邻的。

示例2:

输入: nums = [1,2,3]
输出: 3

提示

  • 1 < = n u m s . l e n g t h < = 100 1 <= nums.length <= 100 1<=nums.length<=100
  • 0 < = n u m s [ i ] < = 1000 0 <= nums[i] <= 1000 0<=nums[i]<=1000

方法:动态规划

解题思路

这道题其实和 198. 打家劫舍 解法差不多,区别在于这道题目的数组是成环的。

这道题目分成三种情况:
情况一: 考虑不包含首尾元素,即下标范围为 [1,n-2]

情况二: 考虑包含首元素,但不包含尾元素,即下标范围为 [0,n-2]

情况三: 考虑不包含首元素,但包含尾元素,即下标范围为 [1,n-1]

而情况一被包括在情况二和三里面了,所以不用考虑。
接下来动态规划的分析五部曲和 198. 打家劫舍 一样。

  1. 确定 dp 数组以及下标的含义
    dp[i] 的定义:达到第 i 个房间所能偷窃到的最高金额。

  2. 确定递推公式
    决定 dp[i] 的因素是第 i 房间偷还是不偷。

    如果偷第 i 座房屋,那么 dp[i] = dp[i - 2] + nums[i]; 即第 i - 1 座房屋是不考虑的,找出 i - 2 座房屋可以偷到的最大金额再加上当前第 i 座房屋可以偷到的金额。

    如果不偷第 i 座房屋, 那么 dp[i] = dp[i-1]; 即考虑 i - 1 座房屋可以偷到的最大金额。

    最后取两种情况取最大值,即 dp[i] = max(dp[i - 2] + nums[i], dp[i-1]);

  3. dp 数组如何初始化
    那么看一下递归公式,dp[i] 由 dp[i - 1],dp[i - 2] 推出,既然初始化所有的 dp[i] 是不可能的,那么只初始化 dp[0] 和 dp[1] 就够了,其他的最终都是 dp[0]、dp[1]推出。

    所以初始化代码为: dp[0] = nums[0], dp[1] = max(nums[0], nums[1]);

  4. 确定遍历顺序
    dp[i] 是由 dp[i - 1]、dp[i - 2]推出,所以是从前到后遍历 nums 数组就可以了。

  5. 举例推导 dp 数组
    拿示例 2:nums = [2, 7, 9, 3, 1] ,来模拟一下 dp 数组的状态变化,如下:

    下标 i01234
    nums[i]27931
    dp[i]27111112

代码

class Solution {
public:
    int rob(vector<int>& nums) {
        int n = nums.size();
        if(n == 1)  return nums[0];
        int result1 = robRange(0, n - 2, nums);
        int result2 = robRange(1, n - 1, nums);
        return max(result1, result2);
    }
    int robRange(int start, int end, vector<int>& nums) {
        if(end == start)    return nums[start];
        vector<int> dp(nums.size());
        dp[start] = nums[start];
        dp[start + 1] = max(nums[start], nums[start + 1]);
        for(int i = start + 2; i <= end; i++)
            dp[i] = max(dp[i - 1], dp[i - 2] + nums[i]);
        return dp[end];
    }
};

复杂度分析

  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值