【动态规划】leetcode 62. 不同路径

62. 不同路径

题目描述

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

示例1:

在这里插入图片描述

输入: m = 3, n = 7
输出: 28

示例2:

输入: m = 3, n = 2
输出: 3
解释:
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向下 -> 向下
  2. 向下 -> 向下 -> 向右
  3. 向下 -> 向右 -> 向下

示例3:

输入: m = 7, n = 3
输出: 28

示例4:

输入: m = 3, n = 3
输出: 6

提示

  • 1 < = m , n < = 100 1 <= m, n <= 100 1<=m,n<=100
  • 题目数据保证答案小于等于 2 ∗ 1 0 9 题目数据保证答案小于等于 2 * 10^9 题目数据保证答案小于等于2109

方法:动态规划

解题思路

  1. 确定 dp 数组以及下标的含义
    dp[i][j] 的定义:表示 (0,0) 出发到 (i,j) 共有 dp[i][j] 条路径。

  2. 确定递推公式
    想要求 dp[i][j],只能有两个方向来推导出来,即 dp[i - 1][j] 和 dp[i][j - 1]。

    所以 dp[i][j] = dp[i - 1][j] + dp[i][j-1];

  3. dp 数组如何初始化
    (0,0) 到 (0,i) 和 (i,0) 都只有一条路径。

    所以初始化代码为:

	int dp[m][n];
    for(int i = 0; i < m; i++)  dp[i][0] = 1;
    for(int i = 0; i < n; i++)  dp[0][i] = 1;
  1. 确定遍历顺序
    这里要看一下递归公式 dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j] 都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
  2. 举例推导 dp 数组
    拿示例 1:m = 3, n = 7:
    1111111
    1234567
    13610152128

代码

class Solution {
public:
    int uniquePaths(int m, int n) {
        int dp[m][n];
        for(int i = 0; i < m; i++)  dp[i][0] = 1;
        for(int i = 0; i < n; i++)  dp[0][i] = 1;
        for(int i = 1; i < m; i++)
            for(int j = 1; j < n; j++)
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
        return dp[m - 1][n - 1];
    } 
};

复杂度分析

  • 时间复杂度: O ( n × m ) O(n \times m) O(n×m)
  • 空间复杂度: O ( n × m ) O(n \times m) O(n×m)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值