python 并发入门 python多线程 入门 笔记

本文介绍了Python多线程的基础知识,包括主线程、守护线程和join()的用法。通过实例展示了不设置守护线程时,主线程会等待所有子线程执行完毕;设置守护线程则主线程结束后,子线程会被立即终止。同时,还探讨了join()方法在线程同步中的作用,以及其timeout参数的意义。
摘要由CSDN通过智能技术生成

菜鸟教程   Python3 多线程   step1. 先学习菜鸟教程,弄清线程的基本函数

step 2   理解: 主进程, 守护进程,为什么要用join  Python多线程与多线程中join()的用法

Python多线程与多线程中join()的用法

首先需要明确几个概念:

知识点一:
当一个进程启动之后,会默认产生一个主线程,因为线程是程序执行流的最小单元,当设置多线程时,主线程会创建多个子线程,在python中,默认情况下未设置子线程为守护线程(其实就是setDaemon(False)),主线程执行完自己的任务以后,就退出了,此时子线程会继续执行自己的任务,直到自己的任务结束,例子见下面一。

知识点二:
当我们使用setDaemon(True)方法,设置子线程为守护线程时,主线程一旦执行结束,则全部线程全部被终止执行,可能出现的情况就是,子线程的任务还没有完全执行结束,就被迫停止,例子见下面二。

知识点三:
此时join的作用就凸显出来了,join所完成的工作就是线程同步,即主线程任务结束之后,进入阻塞状态,一直等待其他的子线程执行结束之后,主线程在终止,例子见下面三。

知识点四:
join有一个timeout参数:

  1. 当设置守护线程时,含义是主线程对于子线程等待timeout的时间将会杀死该子线程,最后退出程序。所以说,如果有10个子线程,全部的等待时间就是每个timeout的累加和。简单的来说,就是给每个子线程一个timeout的时间,让他去执行,时间一到,不管任务有没有完成,直接杀死。
  2. 没有设置守护线程时,主线程将会等待timeout的累加和这样的一段时间,时间一到,主线程结束,但是并没有杀死子线程,子线程依然可以继续执行,直到子线程全部结束,程序退出。

一:Python多线程的默认情况

import threading
import time

def run():
    time.sleep(2)
    print('当前线程的名字是: ', threading.current_thread().name)
    time.sleep(2)


if __name__ == '__main__':

    start_time = time.time()

    print('这是主线程:', threading.current_thread().name)
    thread_list = []
    for i in range(5):
        t = threading.Thread(target=run)
        thread_list.append(t)

    for t in thread_list:
        t.start()

    print('主线程结束!' , threading.current_thread().name)
    print('一共用时:', time.time()-start_time)

其执行结果如下

关键点:

  1. 我们的计时是对主线程计时,主线程结束,计时随之结束,打印出主线程的用时。
  2. 主线程的任务完成之后,主线程随之结束,子线程继续执行自己的任务,直到全部的子线程的任务全部结束,程序结束。

二:设置守护线程

import threading
import time

def run():

    time.sleep(2)
    print('当前线程的名字是: ', threading.current_thread().name)
    time.sleep(2)


if __name__ == '__main__':

    start_time = time.time()

    print('这是主线程:', threading.current_thread().name)
    thread_list = []
    for i in range(5):
        t = threading.Thread(target=run)
        thread_list.append(t)

    for t in thread_list:
        t.setDaemon(True)
        t.start()

    print('主线程结束了!' , threading.current_thread().name)
    print('一共用时:', time.time()-start_time)

其执行结果如下,注意请确保setDaemon()在start()之前。

关键点:

  1. 非常明显的看到,主线程结束以后,子线程还没有来得及执行,整个程序就退出了。

三:join的作用

import threading
import time

def run():

    time.sleep(2)
    print('当前线程的名字是: ', threading.current_thread().name)
    time.sleep(2)


if __name__ == '__main__':

    start_time = time.time()

    print('这是主线程:', threading.current_thread().name)
    thread_list = []
    for i in range(5):
        t = threading.Thread(target=run)
        thread_list.append(t)

    for t in thread_list:
        t.setDaemon(True)
        t.start()

    for t in thread_list:
        t.join()

    print('主线程结束了!' , threading.current_thread().name)
    print('一共用时:', time.time()-start_time)

其执行结果如下:

关键点:

  1. 可以看到,主线程一直等待全部的子线程结束之后,主线程自身才结束,程序退出。

用多线程执行斐波那契函数

《理解Python并发编程一篇就够了 - 线程篇》--董伟明

python--Wrapper 装饰器

结合两篇文章,用多线程,不用多线程,执行斐波那契函数的代码如下

#coding=utf-8
import time
import threading

#定义装饰器timmer用来计算函数执行花费的时间
def timmer(func):   #装饰器的名字是profile, 调用函数func
    def wrapper(*args,**kwargs):
        start_time=time.time()
        func(*args,**kwargs)
        end_time= time.time()
        print( 'run time is %s'%(end_time-start_time))
    return wrapper

#斐波那契数列
def fib(n):
    if n<=2:
        return 1
    return fib(n-1)+fib(n-2)

@timmer
def no_thread():
    fib(35) #不用多线程执行fib函数

@timmer
def use_thread():
    for i in range(2):
        t=threading.Thread(target=fib,args=(35,)) #用多线程执行fib函数
        t.start() #启动多线程
    main_thread=threading.currentThread()   #主线程
    for t in threading.enumerate():
        if t is main_thread:
            continue
            t.join()

no_thread()   #无多线程,执行时间是 4.051244735717773
use_thread()  #用多线程执行时间是: 0.02497553825378418

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值