8、多设备和异构插件

多设备插件

多设备插件会在运行时检查当前各个计算设备的利用率,然后决定应该把哪个推理计算请求放到哪个计算设备中取,从而实现负载均衡。例如,有 4 个推理计算请求,电脑上有一个 CPU、一个 GPU、两个英特尔神经计算棒二代,则 4 个推理请求可以在 4 个计算设备上并行执行。

指定使用哪些设备

例如,配置为 MULTI:CPU, GPU, MYRID,意思是指定 Inference Engine 使用多设备插件,可以在 CPU、GPU、MYRID 上并行执行推理计算,排在前面的计算设备优先级高。

代码实例

// --------------------------- 5. 创建Infer Request--------------------------------------------
	std::cout << "5.Create Infer Request..." << std::endl;
	InferRequest::Ptr infer_request1 = executable_network.CreateInferRequestPtr();
	InferRequest::Ptr infer_request2 = executable_network.CreateInferRequestPtr();
	InferRequest::Ptr infer_request3 = executable_network.CreateInferRequestPtr();
	InferRequest::Ptr infer_request4 = executable_network.CreateInferRequestPtr();

	// --------------------------------------------------------------------------------------------

	// --------------------------- 6. 准备输入数据 ------------------------------------------------
	std::cout << "6.Prepare Input..." << std::endl;
	cv::Mat img1 = cv::imread(imageFile);
	cv::Mat img2 = cv::imread(imageFile);
	cv::Mat img3 = cv::imread(imageFile);
	cv::Mat img4 = cv::imread(imageFile);
	frameToBlob(img1, infer_request1, imageInputName);
	frameToBlob(img2, infer_request2, imageInputName);
	frameToBlob(img3, infer_request3, imageInputName);
	frameToBlob(img4,<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值