Time Limit: 5000MS | Memory Limit: 65536K | |
Total Submissions: 4774 | Accepted: 2007 |
Description
The Windy's is a world famous toy factory that owns M top-class workshop to make toys. This year the manager receives N orders for toys. The manager knows that every order will take different amount of hours in different workshops. More precisely, the i-th order will take Zij hours if the toys are making in the j-th workshop. Moreover, each order's work must be wholly completed in the same workshop. And a workshop can not switch to another order until it has finished the previous one. The switch does not cost any time.
The manager wants to minimize the average of the finishing time of the N orders. Can you help him?
Input
The first line of input is the number of test case. The first line of each test case contains two integers, N and M (1 ≤ N,M ≤ 50).
The next N lines each contain M integers, describing the matrix Zij (1 ≤ Zij ≤ 100,000) There is a blank line before each test case.
Output
For each test case output the answer on a single line. The result should be rounded to six decimal places.
Sample Input
3 3 4 100 100 100 1 99 99 99 1 98 98 98 1 3 4 1 100 100 100 99 1 99 99 98 98 1 98 3 4 1 100 100 100 1 99 99 99 98 1 98 98
Sample Output
2.000000 1.0000001.333333
#include <stdio.h> #include <string.h> #define CLEAR(arr, val) memset(arr, val, sizeof(arr)) #define MAXN 55 #define MAXM 3000 #define INF 0xfffffff bool vis[MAXM]; int n, src, end, res, edge_num, cost[MAXN][MAXN], edge_head[MAXM], d[MAXM], pre[MAXM], queue[MAXM<<4]; struct Edge { int to, re, next, cap, cost; } edge[MAXM*MAXM]; void add_edge(int from, int to, int cap, int cost) { edge[edge_num].to = to; edge[edge_num].cap = cap; edge[edge_num].cost = cost; edge[edge_num].next = edge_head[from]; edge[edge_num].re = edge_num + 1; edge_head[from] = edge_num++; edge[edge_num].to = from; edge[edge_num].cap = 0; edge[edge_num].cost = -cost; edge[edge_num].next = edge_head[to]; edge[edge_num].re = edge_num - 1; edge_head[to] = edge_num++; } bool spfa() { int i, p, now, next, front, rear; CLEAR(vis, false); for (i = 0; i <= end; ++i) d[i] = INF; d[src] = 0; front = rear = 0; queue[rear++] = src; vis[src] = true; while (front != rear) { now = queue[front++]; //if (front == MAXN) // 循环队列 // front = 0; vis[now] = false; for (p = edge_head[now]; p != 0; p = edge[p].next) { next = edge[p].to; if (edge[p].cap && d[next] > d[now] + edge[p].cost) { d[next] = d[now] + edge[p].cost; pre[next] = p; // 记录边的编号..通过边回溯路径 if (!vis[next]) { queue[rear++] = next; // if (rear == MAXN) // rear = 0; vis[next] = true; } } } } if (d[end] != INF) return true; return false; } void compute() { int i, p; for (i = end; i != src; i = edge[edge[p].re].to) { p = pre[i]; edge[p].cap -= 1; edge[edge[p].re].cap += 1; res += edge[p].cost; } } int main() { int i, j, k, cases, m; scanf("%d", &cases); while (cases--) { edge_num = 1; CLEAR(edge_head, 0); scanf("%d%d", &n, &m); for (i = 1; i <= n; ++i) for (j = 1; j <= m; ++j) scanf("%d", &cost[i][j]); // 第i个任务在第j个机器上的时间 src = 0; end = m * n + n + 1; for (i = 1; i <= n; ++i) add_edge(src, i, 1, 0); for (i = 1; i <= n; ++i) // 第i个任务 for (j = 1; j <= n; ++j) // 对应矩阵的列 for (k = 1; k <= m; ++k) // 对应矩阵的行 add_edge(i, n+(j-1)*m+k, 1, cost[i][k]*j); for (i = n+1; i <= m*n+n; ++i) // m*n+n!! 不要忘了前面的n个源点.. add_edge(i, end, 1, 0); res = 0; while (spfa()) compute(); printf("%.6lf\n", 1.0*res/n); } return 0; }