排序算法系列:奇偶排序算法

概述

在上一篇中我们说到了冒泡排序的原理及实现详解。冒泡排序是一种交换排序,本文还是接着上一讲,说说另一种交换排序算法——奇偶排序。


版权说明

著作权归作者所有。
商业转载请联系作者获得授权,非商业转载请注明出处。
本文作者:Q-WHai
发表日期: 2016年02月01日
本文链接:https://qwhai.blog.csdn.net/article/details/50605563
来源:CSDN
更多内容:分类 >> 算法与数学


目录

奇偶排序算法

奇偶排序实际上在多处理器环境中很有用,处理器可以分别同时处理每一个奇数对,然后又同时处理偶数对。因为奇数对是彼此独立的,每一刻都可以用不同的处理器比较和交换。这样可以非常快速地排序。
                                     — 《Java数据结构和算法》


算法原理

我不太清楚有多少人跟我一样,看到奇偶排序的第一感觉是,对数组中的奇数列和偶数列分别进行排序,再使用类似归并排序中的合并操作使整体有序。
  不过,这里的臆想并不是奇偶排序的思想,希望大家不要将上面的思路理解成奇偶排序。纠错之后,让我们来看看真正的奇偶排序是什么样的吧。
  奇偶排序的核心是,以奇数列为基准和以偶数列为基准对整个数组进行排序。而排序的元素只有两个,基准元素和其右侧相邻的一个元素。原理可参见下面的算法原理图。


算法原理图

这里写图片描述


算法步骤

  1. 选取所有奇数列的元素与其右侧相邻的元素进行比较,将较小的元素排序在前面;
  2. 选取所有偶数列的元素与其右侧相邻的元素进行比较,将较小的元素排序在前面;
  3. 重复前面两步,直到所有序列有序为止。

算法可行性证明

在前一篇冒泡排序算法,我们并没有算法可行性证明这一个点,原因是因为从它的原理或是过程图中,我们可以从直观上理解到它的可行性。而现在要说的奇偶排序则不一样了,我们从上面的原理图,无法得出此算法就一定可行,所以在此给出一些比较简单地算法可行性证明过程。证明过程如下:

  1. 我们使用奇数排序+偶数排序,可以覆盖数组中的所有元素;1
  2. 针对一组操作(奇数排序+偶数排序),数组中的所有元素形成链状;2
  3. 假定一个元素为a[i],我们可以通过N次的奇偶交换排序,将a[i]沿着上面的链状结构移动到合适的位置;
  4. 通过第3步的分析,我们可以将数组中的所有元素移动到合适的位置,从而使整体有序。

算法过程图

这里写图片描述


算法实现

private void core(int[] array) {
        int arrayLength = array.length;
        boolean oddSorted = false;
        boolean evenSorted = false;
        
        while(!oddSorted || !evenSorted) {
            int base = 0;
            oddSorted = true;
            evenSorted = true;
            
            for (int i = base; i < arrayLength - 1; i += 2) {
                if (array[i] > array[i + 1]) {
                    ArrayUtils.swap(array, i, i + 1);
                    oddSorted = false;
                }
            }
            
            base = 1;
            for (int i = base; i < arrayLength - 1; i += 2) {
                if (array[i] > array[i + 1]) {
                    ArrayUtils.swap(array, i, i + 1);
                    evenSorted = false;
                }
            }
        }
    }

算法复杂度分析

排序方法 时间复杂度 空间复杂度 稳定性 复杂性
平均情况 最坏情况 最好情况
奇偶排序 O(nlog2n) O(nlog2n) O(n) O(1) 稳定 较简单

Ref


GitHub源码下载

  • https://github.com/qwhai/algorithms-sort

征集

如果你也需要使用ProcessOn这款在线绘图工具,可以使用如下邀请链接进行注册:
https://www.processon.com/i/56205c2ee4b0f6ed10838a6d


  1. 因为我们可以覆盖所有的元素,所以才可以对全体元素进行排序,这一点是基础。 ↩︎

  2. 可能大家对这一点不太明白,可是这一特征是我们奇偶排序得以实现的关键一点。如果我们的元素在操作的过程中不能形成一个完整的链状结构,也就是说数组被分裂成两个部分(或者多个部分),这样部分之间不能交流,信息被隔断。排序就无从谈起了。这一点保证了元素在整个数组中的移动空间。 ↩︎

发布了206 篇原创文章 · 获赞 495 · 访问量 131万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 程序猿惹谁了 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览