大话数据结构个人笔记

作为一个iOS开发小白,数据结构是必须的,在各种询问求助后,了解到这本书海可以,比较适合自己:也做一些笔记,方便日后查询。

  本文章笔记为方便个人使用,主要记录一些基础概念,主要方便之后学习算法导论查看一下概念(数据结构里概念太繁杂)有兴趣码友可以看看。

1 基础

  数据结构:是相符之间存在一种或多种特定关系到数据元素的集合。

1.1 逻辑结构: 数据对象中数据元素之间的相互关系

    1.1.1 集合结构:集合结构的数据元素除同属于一个集合外,它们之间没有其他的关系;

    1.1.2 线性结构:数据元素之间是一一对应的;

    1.1.3 树形结构:数据元素之间存在一种一对多多层次关系;

    1.1.4 图形结构:数据元素是多对多多关系;

1.2 物理结构:数据的逻辑结构在计算机中的存储形势

    1.2.1 顺序存储结构:把数据元素存放在地址连续的存储单元里,其逻辑关系和物理关系一致(数组);

    1.2.2 链式存储结构:数据元素存放在任意的存储单元里,这组存储单元可以联系也可不连续;

1.3 抽象数据类型

    数据类型:一组性质相同的值的集合及定义在此集合上的一些操作的总称

     类型就是用来说明变量或表达式的取值范围和所能进行的操作

     抽象:取出事物具有普遍性的本质;

    1.3.1 抽象数据类型:指一个数学模型及定义在该模型上的一组操作;

    

2 算法

   是解决特定问题求解步骤等描述,在计算机中表现为指令等有限序列,并且每条指令表示一个或多个操作;

  特性:输入输出,

     有穷性:执行有限步骤之后,自动结束而不会出现无限循环,并且每一个步骤在可接受的时间内完成;

     确定性:算法的每一步骤具有确定的含义,不会出现二意性;

     可行性:算法的每一步都必须可行,每一步都能够通过执行有限次数完成;

     正确性,可读性,      健壮性:对不合法的输入做出相关处理;

     时间效率高,存储量低;

 

  2.7 算法效率的度量方法

    事前分析估算方法:在计算机程序编制前,依据统计方法对算法进行估算;

    函数的渐进增长:给定两个函数f(n)和g(n),如果存在一个整数N,使得对于n>N,f(n)和总比g(n)大,那么,我们说f(n)的增长渐进快于g(n)

  2.8 算法时间复杂度

    :语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n变化的情况并确定T(n)的数量级。算法的时间亮度,记作:T(n)=O(f(n))。它表示随着问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称时间复杂度。集中f(n)是问题规模n的某个函数。

    O(1)  < O(lgn)  <  O(n) <  O(nlgn)  < O(n2)< O(n3)<O(2n)  < O(n!) < O(nn)

  2.12 算法的空间复杂度

    S(n)=O(f(n)):n为问题规模,f(n)为语句关于n所占存储空间的函数;

 

3 线性表

  线性表元素个数定义为线性表长度,n=0,为空表;

  线性表的顺序存储结构:用一段地址连续的存储单元依次存储线性表的数据元素(一维数组)

  3.4.3 数组长度:存储空间的长度;   线性表的长度:线性表中数据元素的个数;

   存储器中的每个单元都有自己的编号,称为地址;

  Loc(ai)=Loc(a1) +(i-1)*c     时间复杂度:存取时间性能O(1) ---随机存储结构

  3.5.4 优点:无须为逻辑关系增加额外存储空间,可以快速存取表中任意位置;

       缺点:插入删除需移动大量元素,线性表长度变化难以确定存储空间,存储空间“碎片”

  3.6 线性表的链式存储结构

  一个节点:数据(数据域)+指针(指针域)

  单链表:每个结点只包含一个指针域

  头指针:链表中第一个结点的存储位置;   线性链表的最后一个结点指针为空(NULL)

  头结点:单链表的第一个结点前设的一个结点;数据域一般无意义(可存储链表长度)

  头指针不为空;头结点不一定是链表必须要素

  3.8.1 单链表的插入,将s插入到p后: s->next=p->next, p->next=s(赋值顺序不能调换,否则出错)

  3.9 单链表整表创建:r->next=p(将新建p结点放在r后面),r=p(p为最后结点赋给r),p->=NULL

  3.11 单链表结构优点:插入删除时间O(1),不需要预分配;

  确定:查找O(n)

  3.12 静态链表:用数组描述的链表;

  优点:插入删除只需修改游标;

  缺点:表长依然难以确定,失去顺序存储结构的随机性;

  3.13 循环链表:将单链表中终端结点的指针端由空指针改为头指针;

  3.14 双向链表:在单链表的每个节点中,再设置一个指向其前驱结点的指针域;(空间换时间)

    插入时需要保证p->next的赋值在四个操作中最后进行

 

4 栈 

  限定仅在表尾进行插入和删除操作的线性表;

  后进先出,操作在栈顶进行,后进先出(LIFO结构);

  进栈,压栈:插入操作

  出栈:删除操作

  4.6.1 栈的链式存储结构,链栈;

  链栈:空间大小可不确定 ;      顺序栈:空间大小确定

  栈的作用:有效解决递归问题

  递归:直接调用自己或通过一系列的语句间接调用自己的函数;

  迭代:循环结构;  递归:选择结构;

  后缀表达式:逆波兰;

  中缀表达式:标准四则运算表达式;

  4.9.3 中缀转后缀:从左到右遍历中缀表达式每个数字和符号,若是数字就输出,即成为后缀表达式的一部分;若是符号,则判断其与栈顶符号的优先级,是右括号或优先级低于栈顶符号则栈顶元素依次出栈并输出,并将当前符号进栈,一直到最终输出后缀表达式为止;

  4.10 队列:允许在一段进行插入操作,在另一端进行删除操作的线性表;

    first in first out(FIFO)

  队尾:允许插入;  队头:允许删除;

  队列顺序存储不足,删除队头,需要移动这个数组O(n);

  front指向队头元素,rear指向队尾元素;

  front = rear 空队列

  循环队列:头尾相接;设置flag,以区别front = rear时为空还是满;

  4.13 队列等链式存储结构

  就是线性表的单链表,但只能尾进头出,链队列;

  空队列:front和rear指向头结点;

 

 

5 串

  是由零个或多个组成的有限序列,字符串;

  空格串:只包含空格的串;  空串:零个字符串;

    模式匹配算法,克努特-莫里斯-普拉斯算法(KMP模式)(没看懂)

    http://blog.csdn.net/joylnwang/article/details/6778316

  

6 树

  n(n≥0)个结点的有限集。n=0时称为空树。在任意一颗非空树中:有且仅有一个特定的称为根(Root)的结点;当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2...Tn,其中每一个集合本身又是一颗树,并且称为根的子树(SubTree)。

  结点拥有的子树的数称为结点的度(Degree)。度为0度结点称为叶结点(Leaf)或终端结点;度不为0的结点称为非终端结点或分支结点,也称为内部结点。树的度是树内各结点的度的最大值。

  结点子树的根称为该结点的孩子(Child),该结点称为孩子的双亲(Parent)。同一个双亲的孩子之间互称兄弟(Sibling)。结点的祖先是从根到该结点所经分支上的所有结点。

  结点的层次从根开始定义,根为第一层,根的孩子为第二层。树中结点的最大层次称为树的深度(Deoth)或高度。

  如果将树中结点的各子树看成从左至右是有次序的,不能互换的,则称该树为有序树,否则称为无序树。森林是棵互不相交的树的集合。

  6.5 二叉树(Binary Tree):n(n≥0)个结点的有限集合,该集合或者为空集,或者由一个根结点和两棵互不相交的,分别为根结点的左子树和右子树的二叉树组成。

  特点:每个节结点最多两棵子树,即度不大于2,左右子树次序一定;

  五种基本形态:空二叉树,只有一个根结点,根结点只有左子树,根结点只有右子树,根结点既有左子树又有右子树;

  6.5.2 斜树:所有结点都只有左子树为左斜树,只有右子树为右斜树,这两种统称斜树;

  满二叉树:所有分支结点都存在左子树和右子树,并且所有叶子都在同一层上;

  完全二叉树:一个有n个结点的二叉树按层序编号,如果编号为i的结点与同样深度的满二叉树中编号为i的结点在二叉树中位置完全相同,则这棵二叉树称为完全二叉树;

  满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树;

  完全二叉树特点:叶子结点只能出现在最下两层;最下层的叶子一定集中在左部连续;倒数二层若有叶子结点,一定都在右部连续位置;当结点度为1,则该结点只有左孩子;同样结点树的二叉树,完全二叉树的深度最小;

  二叉树性质

    1:在二叉树的第i层上至多有2^(i-1)个结点(i≧1);

    2:深度为k的二叉树至多有(2^k)-1个结点(k≧1);

    3:任意一棵二叉树T,如果终端结点数为n0,度为2的结点数为n2,则n0=n2+1;

    4:具有n个结点的完全二叉树深度为「㏒2(n) 」+1(「x」表示不大于x的最大整数)

    5:如果对一棵有n个结点的完全二叉树的结点按层序编号(从第1层到第「㏒2(n) 」+1层),对任意一结点有:  

      如果i=1,则结点i是二叉树的根,无双亲;i≧1,则其双亲是结点「i/2」;

      如果2*>n,则结点i无左孩子(结点i为叶子结点);否则其左孩子是结点2*i;

      如果2*i>n,则结点i无右孩子;否则其右孩子是结点2*i+1;

   6.7 二叉树的存储结构

  二叉链表:链表中结点设计一个数据域和两个指针域(表示两个孩子)

  6.8 二叉树都遍历:

    从根结点出发,按照某种次序依次访问二叉树中所有结点,使得每个节点被访问一次且仅被访问一次;

    前序遍历:若二叉树为空,则空操作返回,否则先访问根结点,然后前序遍历左子树,再前序遍历右子树;

    中序遍历:若树为空,则空操作返回,否则从根结点开始(并不是先访问根结点),中序遍历根结点左子树,然后访问根结点,最后中序遍历右子树;

      后序遍历:若树为空,则空操作返回,否则从左到右先叶子后结点到方式遍历访问左右子树,最后访问根结点;

    层序遍历:若树为空,则空操作返回,否则从树第一层,也就是根结点开始访问,从上而下逐层遍历,同一层从左到右顺序访问;

   6.8.6 二叉树遍历性质

    已知前序遍历序列和中序遍历序列可以唯一确定一棵二叉树;

    已知后序遍历序列和中序遍历序列可以唯一确定一棵二叉树;

  6.9 二叉树的建立

    扩展二叉树:将二叉树的每个结点的空指针引出一个虚结点,其值为一特定值;

  6.10 线索二叉树

    指向前驱和后继的指针称为线索,加上线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树;

    线索化:对二叉树以某种次序遍历使其变为线索二叉树的过程;

  6.12 赫夫曼编码

    带权路径长度WPL最小的二叉树称作赫夫曼树;

 

7 图

  由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合;

  图中数据元素称为顶点;

  图结构中不允许没有顶点;

  任意两点之间都可能有关系,顶点之间的逻辑关系用边来表示,边集可以为空;

7.2.1 各种图定义

  无向边:顶点V1和Vi之间的边没有方向,则称这条边为无向边(Edge),用无序偶对(Vi Vj)来表示;

  如果图中任意两个顶点之间的边都是无向边,则称该图为无向图;

  有向边:若顶点从V1到Vi的边有方向,则称这条边有方向,也称为弧(Arc),用有序偶

<Vi Vj>表示,Vi称为弧尾(Tail),Vj为弧头(Head);

  若图中任意两个顶点之间的边都是有向边,则称该图为有向图;如:顶点A到D的有向边,A是弧尾,D是弧头,<A,D>表示弧;

  简单图:若不存在顶点到其自身的边且同一条边不重复出现;

  无向完全图:在无向图中任意两个顶点都存在边;含有n个顶点的完全图有n*(n-1)/2条边;

  有向完全图:有向图中任意两个顶点之间都存在方向互为相反的两天弧,有n*(n-1)条边;

  有很少条边或弧度图称为稀疏图,反之称为稠密图;

  图的边或弧相关的树叫做权(Weight),带权的图称为网(Network);

  假设图G=(V,{E}),图G'=(V',{E'}),如果V'⊆V且E'⊆E,则称G'为G的子图(Subgraph);

   对于无向图G=(V,{E}),如果边(v,v')∈E,则称顶点v和v'互为邻接点,即v和v'相领接边(v,v')依附于顶点v和v',顶点v的度是和v相关联的边的数目,记为TD(v);

  边数就是各顶点度数和道一半:e= 0.5* TD(vi)  (i=1,2,3...n)

  对于有向图G=(V,{E}),以顶点v为头的弧度数目称为v的入度,记为ID(v),以v为尾的弧的数目称为v的出度,记为OD(v);顶点v的度为TD(v)=ID(v)+OD(v);

  无向图中从顶点v到顶点v'的路径是一个顶点序列;有向图的路径也是有向的;

  路径的长度是路径上的边或弧度数目;

  第一个顶点到最后一个顶点相同的路径称为换或回路,序列中不重复出现的路径称为简单路径;

7.2.3 连通图

  无向图中,从顶点v到v‘有路径则称为v和v’是连通的;如果对于图中任意两点都是连通的,则称图是连通图;

  无向图中的极大连通子图称为连通分量;

    连通分量条件:子图/子图连通/连通子图含有极大顶点树/具有极大顶点数的连通子图包含依附于这些顶点的所有边;

   在有向图G中,如果每一对v,v‘∈V,v≠v’,从v到v‘和从v’到v都存在路径,则称G是强连通图;有向图中的极大强连通子图称作有向图的强连通分量;

  一个连通图的生成树是一个极小的连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边;

  如果一个有向图恰有一个顶点的入度为0,其余顶点的入度均为1,则是一棵有向树;

   一个有向图的生成森林由若干棵有向树组成,含有图中全部顶点,但只有足以构成若干棵不相交的有向树的弧;

 7.4 图的存储结构

  7.4.1 邻接矩阵:一个一维数组存储图中顶点信息,一个二维数组存储图中的边或弧度信息;

    二维数组就是矩阵形式存储,v[i][j]表示顶点i到j的边或弧;

    n个顶点和e条边的无向网图创建时间复杂度O(n*n+n+e);

  7.4.2 邻接表:数组与链表相结合的存储方式

    顶点右一位数组存储,每个数据元素存储指向第一个领接点的指针,每个顶点的所有领接点构成一个线性表;

    有向图的逆邻接表:对每个顶点vi建立一个链接为vi为弧头的表;

  7.4.3 十字链表

    将邻接表和你邻接表结合起来;

    结点存储数据/入边表头指针/出边表头指针;

  7.4.4 邻接多重表

  7.4.5 边集数组

    由两个一维数组构成,一个是存储顶点的信息;另一个存储边的信息,这个边数组每个数据元素由一条边的起点下表,终点下表和权组成;

7.5 图的遍历

  从图中某一顶点出发遍历图中其余顶点,且每个顶点仅被访问一次,称为图的遍历;

  深度优先遍历:从某顶点v出发,访问该顶点,然后从v的未被访问邻接点出发深度优先遍历图,直到图中所有和v有路径相同的顶点都被访问;

  7.5.2 广度优先遍历

    与深度优先遍历时间复杂度相同;(类似树的层序遍历)

7.6 最小生成树

  构造连通网的最小代价生成树称为最小生成树;

  7.6.1 普里姆(Prim)算法

    时间复杂度:O(n*n);

  7.6.2 克鲁斯卡尔(Kruskal)算法

    时间复杂度O(e*log e)

7.7 最短路径

  迪杰斯特拉算法:时间复杂度O(n*n);

  弗洛伊德算法:时间复杂度O(n*n*n);

7.8 拓扑排序

  AOV网:在一个表示工程的有向图中,用顶点表示活动,用弧表示活动间的优先关系;

  拓扑序列:有向图G,满足从顶点vi到vj有一条路径,则在顶点序列中顶点vi必在vj之前;

  拓扑排序:对一个有向图构造拓扑序列对过程;

    时间复杂度:O(n+e)

  AOE网:在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,用边上的权值表示活动的持续时间,

7.9 关键路径:

  从源点到汇点具有最大路径;

 

 

 8 查找

  根据给定某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录);

  查找表:由同一类型的数据元素构成的集合;

  关键字:数据元素中某个数据项的值,又称键值;

  主关键字:此关键字可以唯一表示一条记录;

  数据项对应数据码;

  查找:根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录);

  静态查找表:只做查找操作的查找表;

  动态查找表:在查找过程中同时插入不存在的数据元素,或者从查找表中删除已经存在的某个数据元素

8.3 顺序表查找

  顺序查找/线性查找:从表中第一个(或最后一个)记录开始,逐个进行记录的关键字和给定值比较,若相等则查找成功,直到最后一个(或第一个)记录,不等则查找不成功;

顺序查找优化:将给定值赋予a[0],从尾部遍历,循环条件为是否等于关键字,省去判断越界环节;

8.4 有序表查找

  二分查找/折半查找:在有序表中,取中间记录作为比较对象,若给定值与关键字相等则成功,小于则在左半区查找,大于在右半区查找,直到成功或查找所有区域无记录而查找失败(前提为线性表中记录必须是关键码有序,通常从小到大,且为顺序结构);

    时间复杂度O(log n)

  插值查找:根据要查找的关键字key与查找表中最大最小记录的关键字比较后查找,将二分查找的mid设为mid = low + (key - a[low])/(a[high] - a[low]) * (high - low)

  斐波那契查找:利用斐波那契函数给mid赋值,mid=low+F[k-1]-1;

    时间复杂度O(log n);

8.5 线性索引查找

  索引就是把一个关键字与它对应的记录相关联的过程;

  线性索引:将索引项集合组织为线性结构,也称索引表;

  8.5.1稠密索引

    在线性索引中,将数据集中的每个记录对应一个索引项;

    索引项一定是按照关键码有序排列;

  8.5.2分块索引

    分块有序,是把数据集的记录分成若干块,并且这些快需要满足,块内无序,块间有序;

    块间有序:要求第二块所有记录关键字均大于第一块中所有记录的关键字;

    最佳分块索引情况为块m=√ ̄n(n为记录数),此时平均查找长度L=(√ ̄n)+1;

  8.5.3倒叙索引

    记录号表存储具有相同次关键字的所有记录的记录号(可以是指向记录的指针或者是该记录的主关键字),由属性值来确定记录的位置;

 

8.6 二叉排序树

  二叉查找树/二叉排序树:

        若它的左子树不空,则左子树上所有结点的值均小于它的根结构的值,

        若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值,

        它的左右子树也分别为二叉排序树;

  二叉排序树查找:利用递归在二叉链表中递归查找;

  二叉排序树插入操作:利用查找函数将key插入到最终查找到合适结点到子树上;

  二叉排序树构建:利用插入函数构建(根结点,将之后元素与结点对比,小的在左树中去对比,大的在右树中去对比,直到结点没有孩子,则插入);

  二叉排序树删除:找到删除的结点的直接前驱,用该前驱替换删除的结点;

  二叉排序树以链接的方式存储

 

8.7 平衡二叉树

  --是一种二插排序树,其中每一个节点的左子树和右子树高度差至多等于1;

  平衡因子:左子树与右子树深度差值;

  最小不平衡子树:距离插入节点最近的,且平衡因子的绝对值大于1的结点为根的子树;

  

8.8 多路查找树(B树)

  每一个结点孩子树可以多于两个,且每一个结点处可以存储多个元素;

  2-3树:

    每个结点有两个2个孩子(2结点)或3个孩子(3结点);

    一个2结点包含一个元素和两个孩子(或没有孩子);

    一个3结点包含一小一大两个元素和3个孩子(或没有孩子);

    所有叶子在同一层次上;

  2-3-4树:

    2-3树的扩展,包括4结点;

    一个4结点包括小中大3个元素和4个孩子(或没有孩子);

  B树(B-tree):一种平衡的多路查找树,结点最大的孩子数目称为B树的结;(2-3树是3阶B树)

    如果根结点不是叶结点,则至少有两棵子树;

8.9 散列查找

  散列技术:在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使得每个关键字k对应一个存储位置;散列函数(哈西函数)

  K1≠K2,但f(K1)=f(K2),此时称为冲突,K1和K2称为这个散列函数的同义词;

8.10 散列函数的构造方法

  直接定值;数字分析法;平方取中;折叠法;除留余数法;

8.11 处理散列冲突

  开放定值法:一旦发生冲突,就去寻找下一个空的散列地址;

  再散列函数法:发生冲突,更换散列函数进行计算;

  链地址法:发生冲突,在当前位置给单链表增加结点;

  公共溢出法:给发生冲突的关键字重新建立一个溢出表;

8.12 散列表查找

 

9 排序

   似的序列成为一个按关键字有序的序列;

  排序稳定:Ki=Kj,且排序前Ri领先于Rj,排序后任然领先;

  排序不稳定:Ki=Kj,且排序前Ri领先于Rj,排序后Rj领先Ri;

  内排序:排序过程待排序所有记录放置在内存中;

  外排序:整个排序过程需要在内外存之间切换;

  性能影响:

    1 时间性能:尽可能少的关键字比较次数和尽可能少的纪录移动次数;

    2 辅助空间:存放待排序占用空间加上执行算法所需要其他存储空间;

    3 复杂性: 算法本身复杂度,不止时间;

 

 

  9.3 冒泡:

    时间:O(nˇ2);

  9.4 简单排序:

    通过n-i次关键字比较,从n-i+1个记录中选出关键字最小的值,并和第i个交换;

    时间:O(nˇ2);

    略优于冒泡(每次只交换一个值);

  9.5 直接插入:

    将一个记录插入到已排序的序表中;

    时间:O(nˇ2);

    略优于冒泡(比较次数少);

  9.6 希尔排序:

    基本有序:小的关键字基本在前面,大的基本在后面,不大不小的基本在中间;

    时间:O(nˇ(2/3));

  9.7 堆排序:

    堆:完全二叉树;

    大顶堆:每个结点堆值都大于或等于其左右孩子结点的值;

    小顶堆:每个结点堆值都小于或等于其左右孩子结点的值;

    堆排序(大顶堆):将待排序序列构造一个大顶堆;最大值此时在根结点,移走根结点,剩余n-1个结点从新构造一个堆,得到次小值,如此反复得到一个有序序    列;

 

    

    

let maxsize = 10

struct Sqlist {
    var arr: [Int] = [maxsize + 1]
    var length: Int?
}

//堆排序
    func heapSort(L: Sqlist) {
        for i in L.arr.count...0 {
            heapAdjust(L, s: i, m: L.arr.count)
           
        }
        for i in L.arr.count...1 {
            swap(L.arr, i: 1, j: i)
            heapAdjust(L, s: 1, m: i-1)
        }
    }
    func heapAdjust(var L: Sqlist,var s: Int, m: Int) {
        let temp = L.arr[s]
        for (var j = 2*s; j<=m; j=j*2) {
            if (j<m && L.arr[j] < L.arr[j+1]) {
                j += 1
            }
            if temp >= L.arr[j] {
                break
            }
            L.arr[s] = L.arr[j]
            s = j
        }
        L.arr[s] = temp
    }
    //直接插入排序
    func insertSort(var L: Sqlist) {
        for i in 1...(L.arr.count - 1) {
            if L.arr[i] < L.arr[i-1] {
                let temp = L.arr[i]
                for j in i...0 {
                    if L.arr[j] < temp {
                        L.arr[j] = L.arr[j-1]
                        L.arr[j-1] = temp
                    }
                }
            }
        }

    }
    //选择排序
    func selectSort(L: Sqlist) {
        for i in 0...(L.arr.count - 1) {
            var min = i
            for j in 1...(L.arr.count - i) {
                if L.arr[min] > L.arr[j] {
                    min = j
                }
            }
            if i != min {
                swap(L.arr, i: i, j: min)
            }
        }

    }
    //冒泡优化---可以避免再有序化后再进行判断的多余操作;
    func optimizeBubbkeSort(L: Sqlist) {
        var flag = true
        for i in 0...(L.arr.count - 1) {
            if flag {
                flag = false
            }else {
                return
            }
            for j in 1...(L.arr.count - i) {
                if L.arr[j-1] > L.arr[j] {
                    swap(L.arr, i: j-1, j: j)
                    flag = true
                }
            }
        }
    }
    //冒泡
    func bubbleSort(L: Sqlist) {
 
        for  i in 0...(L.arr.count-1){
            for j in (L.arr.count-1)...i {
                if L.arr[j-1] > L.arr[j] {
                    swap(L.arr, i: j-1, j: j)
                }
            }
        }
    }
    //交换位置
    func swap(var L: [Int], i: Int, j: Int) {
        let temp = L[i]
        L[i] = L[j]
        L[j] = temp

    } 

转载地址:https://www.cnblogs.com/hazhede/articles/5504971.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值