【leetcode】【medium】1155. 掷骰子的N种方法​​​​​​​

1155. 掷骰子的N种方法

这里有 d 个一样的骰子,每个骰子上都有 f 个面,分别标号为 1, 2, ..., f

我们约定:掷骰子的得到总点数为各骰子面朝上的数字的总和。

如果需要掷出的总点数为 target,请你计算出有多少种不同的组合情况(所有的组合情况总共有 f^d 种),模 10^9 + 7 后返回。

示例 1:

输入:d = 1, f = 6, target = 3
输出:1

示例 2:

输入:d = 2, f = 6, target = 7
输出:6

示例 3:

输入:d = 2, f = 5, target = 10
输出:1

示例 4:

输入:d = 1, f = 2, target = 3
输出:0

示例 5:

输入:d = 30, f = 30, target = 500
输出:222616187

提示:

  • 1 <= d, f <= 30
  • 1 <= target <= 1000

题目链接:https://leetcode-cn.com/problems/number-of-dice-rolls-with-target-sum/

 

思路

普通背包问题的练习。

动态数组dp[i][j]存储使用i个骰子和为j的组合数。

唯一的不同只是在于这里所有骰子必须计算,而背包问题可以考虑是否放入。

class Solution {
public:
    int numRollsToTarget(int d, int f, int target) {
        if(d==0 || f==0 || target==0) return 0;
        vector<vector<long long>> dp(d+1, vector<long long>(target+1, 0));
        for(int i=0; i<target+1; ++i){
            dp[0][i] = 0;
            dp[1][i] = i<=f? 1: 0;
        }
        for(int i=0; i<d+1; ++i){
            dp[i][0] = 0;
            dp[i][1] = i==1? 1: 0;
        }
        if(d==1) return dp[d][target];
        for(int i=2; i<=d; ++i){
            for(int j=2; j<=target; ++j){
                for(int m=1; m<=f && m<j; ++m){
                    dp[i][j] += dp[i-1][j-m] % 1000000007;
                }
            }
        }
        return (dp[d][target]) % 1000000007;
    }
};

 

todo:背包问题还不熟练,需要继续练习。

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页