每30秒学会一个Python小技巧,Github星数4600+

来源:Python数据科学

大家好,我是阳哥。

很多学习Python的朋友在项目实战中会遇到不少功能实现上的问题,有些问题并不是很难的问题,或者已经有了很好的方法来解决。当然,孰能生巧,当我们代码熟练了,自然就能总结一些好用的技巧,不过对于那些还在刚熟悉Python的同学可能并不会那么轻松。

本次给大家推荐一个学习这些技巧的很好的资源“30-seconds-of-python”,所有技巧方法只要30秒就能get到,完全可以利用业务时间不断积累。下面赶紧来看一下。

链接:https://github.com/30-seconds/30-seconds-of-python

da51919b6044082081708bcc4d49e68f.png

1. 内容目录

下面是30秒学Python的整个目录,分为几大板块:List、Math、Object、String、Utility,以下是整理的思维脑图。

7ddb9f6c2755c30a46120c94a5d0b1bf.png

我挑选了10个实用并很有意思的方法分享给大家,其余的感兴趣可以自行学习。

1. List:all_equal

功能实现:检验一个列表中的所有元素是否都一样。

解读:使用[1:] 和 [:-1] 来比较给定列表的所有元素。

def all_equal(lst):
  return lst[1:] == lst[:-1]

举例:

all_equal([1, 2, 3, 4, 5, 6]) # False
all_equal([1, 1, 1, 1]) # True

2. List:all_unique

功能实现:如果列表所有值都是唯一的,返回 True,否则 False

解读:在给定列表上使用集合set()去重,比较它和原列表的长度。

def all_unique(lst):
  return len(lst) == len(set(lst))

举例:

x = [1,2,3,4,5,6]
y = [1,2,2,3,4,5]
all_unique(x) # True
all_unique(y) # False

3. List:bifurcate

功能实现:将列表值分组。如果在filter的元素是True,那么对应的元素属于第一个组;否则属于第二个组。

解读:使用列表推导式和enumerate()基于filter元素到各组。

def bifurcate(lst, filter):
  return [
    [x for i,x in enumerate(lst) if filter[i] == True],
    [x for i,x in enumerate(lst) if filter[i] == False]
  ]

举例:

bifurcate(['beep', 'boop', 'foo', 'bar'], [True, True, False, True])

# [ ['beep', 'boop', 'bar'], ['foo'] ]

4. List:difference

功能实现:返回两个iterables间的差异。

解读:创建b的集合,使用a的列表推导式保留不在_b中的元素。

def difference(a, b):
  _b = set(b)
  return [item for item in a if item not in _b]

举例:

difference([1, 2, 3], [1, 2, 4]) # [3]

5. List:flatten

功能实现:一次性的整合列表。

解读:使用嵌套的列表提取子列表的每个值。

def flatten(lst):
  return [x for y in lst for x in y]

举例:

flatten([[1,2,3,4],[5,6,7,8]]) # [1, 2, 3, 4, 5, 6, 7, 8]

6. Math:digitize

功能实现:将一个数分解转换为个位数字。

解读:将n字符化后使用map()函数结合int完成转化

def digitize(n):
  return list(map(int, str(n)))

举例:

digitize(123) # [1, 2, 3]

7. List:shuffle

功能实现:将列表元素顺序随机打乱。

解读:使用Fisher-Yates算法重新排序列表元素。

from copy import deepcopy
from random import randint

def shuffle(lst):
  temp_lst = deepcopy(lst)
  m = len(temp_lst)
  while (m):
    m -= 1
    i = randint(0, m)
    temp_lst[m], temp_lst[i] = temp_lst[i], temp_lst[m]
  return temp_lst

举例:

foo = [1,2,3]
shuffle(foo) # [2,3,1] , foo = [1,2,3]

8. Math:clamp_number

功能实现:将数字num钳在由a和b边界值规定的范围中。

解读:如果num落尽范围内,返回num;否则,返回范围内最接近的数字。

def clamp_number(num,a,b):
  return max(min(num, max(a,b)),min(a,b))

举例:

clamp_number(2, 3, 5) # 3
clamp_number(1, -1, -5) # -1

9. String:byte_size

功能实现:返回字符串的字节数。

解读:使用string.encode('utf-8')解码给定字符串,返回长度。

def byte_size(string):
  return len(string.encode('utf-8'))

举例:

byte_size('😀') # 4
byte_size('Hello World') # 11

10. Math:gcd

功能实现:计算几个数的最大公因数。

解读:使用reduce()和math.gcd在给定列表上实现。

from functools import reduce
import math

def gcd(numbers):
  return reduce(math.gcd, numbers)

举例:

gcd([8,36,28]) # 4

以上就是30秒学python的各种小技巧。怎么样,对于一些常见操作是不是有了一些新的启发,除此之外,还有很多其它技巧可以慢慢学习,希望对各位读者有所帮助。

链接:https://github.com/30-seconds/30-seconds-of-python

---------End---------
精选资料回复关键词,获取对应的资料:
关键词资料名称600《Python知识手册》md《Markdown速查表》time《Python时间使用指南》str《Python字符串速查表》pip《Python:Pip速查表》style《Pandas表格样式配置指南》mat《Matplotlib入门100个案例》px《Plotly Express可视化指南》精选内容神器 VS Code,超详细Python配置使用指南
神器Tushare,财经数据必备工具!
Matplotlib 可视化最有价值的 50 个图表
视频:Plotly 和 Dash 在投资领域的应用
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值