根据前序跟中序遍历的结果建立二叉树——迭代和递归的方法

比如对于前序:1,2,4,8,9,5,10,11,3,6,12,13,7

后序:8,4,9,2,10,5,11,1,12,6,13,3,7

建成的树应该是1-13的满二叉,后序遍历为:8,9,4,10,,11,5,2,12,13,6,7,3,1

主要思想就是把前序放在上面,后序放在下面,依次从后序找到这个前序的位置,建立左右子树。具体思想还得画图,我就不说啦,还是贴代码吧:

#ifndef _BINARY_TREE_H_ 
#define _BINARY_TREE_H_

#include <cassert>
#include <vector>
#include <stack>
using namespace std;

template<typename T>
struct tree_node
{
	T val;
	tree_node* left;
	tree_node* right;

	explicit tree_node(const T val_)
		: val(val_), left(NULL), right(NULL){}

};

template<typename T>
struct binary_tree_default_traverser
{
	void operator()(const tree_node<T>* node) const
	{
		cout << node->val << ", ";
	}
};

template<typename T, typename Pred>
void post_traverse(const tree_node<T>* root, const Pred& pred)
{
	if (root == NULL)
	{//
		return;
	}

	post_traverse(root->left);
	post_traverse(root->right);
	pred(root);
}

template<typename T>
void post_traverse(const tree_node<T>* root)
{
	binary_tree_default_traverser<T> t;
	post_traverse(root, t);
}

template<typename T>
tree_node<T>* build_tree(const vector<T>& pre_order, const vector<T>& in_order)
{
	tree_node<T>* root1 = build_tree_iteratorly(pre_order, in_order);

	size_t ptr = 0;
	tree_node<T>* root2 = build_tree_recursively(pre_order, ptr, 
		in_order, 0, in_order.size());

	post_traverse(root2);
	return NULL;
}

template<typename T>
static size_t find_in_in(const vector<T>& in_order, const T& target, size_t left, size_t right)
{
	size_t ret(left);
	for (; ret < right; ret++)
	{//
		if (in_order[ret] == target)
		{//
			return ret;
		}
	}
	return ret;
}



template<typename T>
tree_node<T>* build_tree_iteratorly(const vector<T>& pre_order,const vector<T>& in_order)
{
	//定义在函数内部,不能调试了。。。
	typedef struct container
	{
		size_t left;
		size_t right;
		tree_node<T>** self;
		container(size_t left_, size_t right_, tree_node<T>** self_)
			: left(left_), right(right_), self(self_){} 
	}container_t;

	//初始化栈
	stack<container_t> s;
	size_t ptr = 0;
	tree_node<T>* root = new tree_node<T>(pre_order[ptr]);
	size_t pos = find_in_in(in_order, pre_order[ptr], 0, pre_order.size());
	container_t left(0, pos, &root->left);
	container_t right(pos+1, pre_order.size(), &root->right);
	s.push(right);
	s.push(left);
	ptr++;

	//处理
	while (!s.empty())
	{//
		container_t c = s.top();
		s.pop();
		if (c.right == c.left)
		{//
			*c.self = NULL;
		}
		else
		{
			tree_node<T>* root = new tree_node<T>(pre_order[ptr]);
			size_t pos = find_in_in(in_order, pre_order[ptr], c.left, c.right);

			*(c.self) = root;

			container_t left(c.left, pos, &root->left);
			container_t right(pos+1, c.right, &root->right);
			//先放右子树,再放左子树
			s.push(right);
			s.push(left);
			ptr++;
		}
	}
	assert(ptr == pre_order.size());
	return NULL;
}

template<typename T>
tree_node<T>* build_tree_recursively(const vector<T>& pre_order,size_t& ptr,const vector<T>& in_order,size_t left, size_t right)
{
	//跟iteratorly不同,不让它出现left==right的情况,
	//如果出现的话,ptr的处理会比较复杂
	if (right - left == 1)
	{//
		tree_node<T>* node = new tree_node<T>(pre_order[ptr]);
		node->left = node->right = NULL;
		return node;
	}

	tree_node<T>* node = new tree_node<T>(pre_order[ptr]);
	size_t pos = find_in_in(in_order, pre_order[ptr], left, right);
	++ptr;
	node->left = build_tree_recursively(pre_order, ptr, in_order, left, pos);
	++ptr;
	node->right = build_tree_recursively(pre_order, ptr, in_order, pos+1, right);
	return node;
}

void build_tree_test()
{
	int pre[] = {1,2,4,8,9,5,10,11,3,6,12,13,7};
	int in[] = {8,4,9,2,10,5,11,1,12,6,13,3,7};
	vector<int> pre_order(pre, pre+13);
	vector<int> in_order(in, in+13);
	build_tree(pre_order, in_order);
}

#endif


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值