解法
主要思想是二分法
先给数组排序,这样答案一定在0和最大差距nums[-1]-nums[0]
之间
然后要解决的是二分查找中的判断函数问题,如何判断什么时候往左边找什么时候往右边找,在这个问题中,显然当差距小于等于mid
的点对的个数大于等于k个的时候要向左找
如何判断【差距小于等于mid
的点对的个数大于等于k个】呢?
采用尺取法,尺取法的使用条件为:(1)单调性,即当某端点固定时,另一端点从左向右移动,或从右向左移动,结果是递增或递减的
(2)查询的结果是大于(等于)某值或者小于(等于)某值
本题固定左端点,不断增加右端点,差距是一直增加的,当增加到比mid
大之后不符合条件了,这时符合条件的数目为两坐标相减
然后增加左端点,直到再次符合小于等于mid
的条件
不会漏掉点对的原因是,如果[i,j]不符合条件,那么[i,j+1,2,…]都不符合条件,而[i,j-1,2,…]都至少在前面某个符合条件的[i,j-1]里统计过了
class Solution(object):
def smallestDistancePair(self, nums, k):
"""
:type nums: List[int]
:type k: int
:rtype: int
"""
nums.sort()
n = len(nums)
l = 0
r = nums[-1]-nums[0]
def isvalid(sum):
cnt = 0
l = 0
for j, x in enumerate(nums):
while x - nums[l] > sum:
l += 1
cnt += j-l
if cnt>=k:
return True
return cnt>=k
while r-l>0:
mid = (l+r)>>1
if isvalid(mid):
r = mid
else:
l = mid+1
return r