解法
区间DP
如何计算DP[i,j]
呢?假设存在s[i]==s[k]
,那么对于任何i<k<=j
:
打印出字符串s[i:k-1]
的最优步骤里,打印s[i]
的那一步一定可以移到第一步,因为其它步骤就算在这一步前打印了也不会覆盖掉s[i]
,因为它是第一个。
那么我们把打印s[i]
的那一步一直打到s[k]
,然后让其它最优步骤正常覆盖s[i+1:k-1]
就可以了。
所以状态转移方程为:
d
p
[
i
,
j
]
=
m
i
n
(
d
p
[
i
,
j
]
,
d
p
[
i
,
k
−
1
]
+
d
p
[
k
+
1
,
j
]
)
dp[i,j] = min(dp[i,j], dp[i,k-1]+dp[k+1,j])
dp[i,j]=min(dp[i,j],dp[i,k−1]+dp[k+1,j])
- 假如除了i以外不存在k使得
s[i]==s[k]
,那么dp[i,j]=1+dp[i+1,j]
为什么不是
dp[i,j]=dp[i,j-1]+1
呢?因为为我们保证s[i+1:j]
中没有s[i]
,所以显然打印完s[i+1:j]
之后多花一步打印s[i]
就好了,但是我们不能保证s[i,j-1]
里没有s[j]
。
- 假如
k==j
,那么 d p [ i , j ] = m i n ( d p [ i , j ] , d p [ i , k − 1 ] ) dp[i,j] = min(dp[i,j], dp[i,k-1]) dp[i,j]=min(dp[i,j],dp[i,k−1]) - 边界条件为: d p [ i , i ] = 1 dp[i,i] = 1 dp[i,i]=1
class Solution(object):
def strangePrinter(self, s):
"""
:type s: str
:rtype: int
"""
n = len(s)
dp = {}
def get(i,j):
if (i,j) not in dp:
if i==j:
dp[(i, j)] = 1
else:
dp[(i,j)] = 1 + get(i+1,j)
return dp[(i, j)]
for l in xrange(1, n):
for i in xrange(n):
j = i+l
if j>=n:
continue
for k in xrange(i+1, j+1):
if s[i]==s[k]:
dp[(i,j)] = min(get(i,j), get(i,k-1)+(get(k+1,j) if k+1<=j else 0))
return get(0,n-1)