518. Coin Change 2

解法

这个有意思,01背包的省空间方法需要从大到小遍历容量
而这个与一个物品可以取无数次的背包相似的问题,恰恰是正好要从小到大遍历
因为容量较小的[j]会先被访问到,假设它只能装一个coins[i],那么更新完毕之后f[j]的种类数就由两部分组成:(1)只使用前i-1种硬币(2)使用一个i硬币
而f[j+coins[i]]将会在后面被遍历到,它未处理之前只包含(1)只使用前i-1种硬币,加上f[j]之后自然就包含两个新的数目:(2)使用一个i硬币【在f[j]的第一部分再加一个i硬币】;(3)使用两个i硬币【在f[j]的第二部分再加一个i硬币】
这样省去了三重循环

class Solution(object):
    def change(self, amount, coins):
        """
        :type amount: int
        :type coins: List[int]
        :rtype: int
        """
        f = [0]*(amount+1)
        f[0] = 1
        n = len(coins)
        for i in xrange(n):
            for j in xrange(coins[i], amount+1):
                f[j] += f[j-coins[i]]
        return f[amount]
### 功能 `int coinChange(vector<int>& coins, int amount)` 函数的主要功能是解决零钱兑换问题,即给定不同面额的硬币 `coins` 和一个总金额 `amount`,计算出凑成总金额所需的最少硬币个数。若无法凑出总金额,则返回 -1 [^1][^2][^4]。 ### 实现 #### 动态规划实现 ```cpp class Solution { public: int coinChange(vector<int>& coins, int amount) { vector<int> dp(amount + 1, amount + 1); dp[0] = 0; for (int i = 1; i <= amount; i++) { for (int j = 0; j < coins.size(); j++) { if (coins[j] <= i) dp[i] = min(dp[i], dp[i - coins[j]] + 1); } } return dp.back() > amount ? -1 : dp.back(); } }; ``` 上述代码使用动态规划的思想,创建一个长度为 `amount + 1` 的数组 `dp`,`dp[i]` 表示凑成金额 `i` 所需的最少硬币个数。初始化 `dp[0] = 0`,因为凑成金额 0 不需要任何硬币。然后通过两层循环,外层循环遍历金额从 1 到 `amount`,内层循环遍历所有硬币。对于每个硬币,如果其面值小于等于当前金额 `i`,则更新 `dp[i]` 为 `dp[i]` 和 `dp[i - coins[j]] + 1` 中的较小值 [^1][^4]。 #### 回溯 + 剪枝实现 ```cpp class Solution { public: int coinChange(vector<int>& coins, int amount) { if (amount == 0) return 0; int ret = INT_MAX; sort(coins.rbegin(), coins.rend()); coinChange(coins, amount, 0, ret, 0); return ret == INT_MAX ? -1 : ret; } void coinChange(vector<int>& coins, int amount, int count, int &ret, int index) { if (amount == 0) { ret = ret < count ? ret : count; return; } if (index == coins.size()) return; for (int k = amount / coins[index]; k >= 0 && k + count < ret; k--) { coinChange(coins, amount - k * coins[index], count + k, ret, index + 1); } } }; ``` 上述代码采用回溯 + 剪枝的方法,先将硬币从大到小排序,然后从最大面额的硬币开始,尽可能多地使用该硬币,若无法凑出金额则回溯。在回溯过程中,若当前使用的硬币数已经超过当前的最优解 `ret`,则不再向下搜索,进行剪枝 [^3]。 ### 优化方案 - **空间优化**:动态规划的实现中,由于每次状态转移只依赖于前一个状态,因此可以考虑使用滚动数组等方式进一步优化空间复杂度,但在该问题中,由于主要是一维数组,空间优化效果不明显。 - **剪枝优化**:在回溯 + 剪枝的实现中,剪枝策略是关键。可以根据实际情况进一步优化剪枝条件,减少不必要的搜索。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值