缓存奠基-缓存火爆概念学习

缓存雪崩
缓存雪崩是由于原有缓存失效(过期),新缓存未到期间。所有请求都去查询数据库,而对数据库CPU和内存造成巨大压力,严重的会造成数据库宕机。从而形成一系列连锁反应,造成整个系统崩溃。
解决方法:
1.一般并发量不是特别多的时候,使用最多的解决方案是加锁排队。
2.给每一个缓存数据增加相应的缓存标记,记录缓存的是否失效,如果缓存标记失效,则更新数据缓存。
缓存标记:记录缓存数据是否过期,如果过期会触发通知另外的线程在后台去更新实际key的缓存。
缓存数据:它的过期时间比缓存标记的时间延长1倍,例:标记缓存时间30分钟,数据缓存设置为60分钟。 这样,当缓存标记key过期后,实际缓存还能把旧数据返回给调用端,直到另外的线程在后台更新完成后,才会返回新缓存。
加锁排队方案伪代码:

//伪代码
public object GetProductListNew() {
    int cacheTime = 30;
    String cacheKey = "product_list";
    String lockKey = cacheKey;
String cacheValue = CacheHelper.get(cacheKey);
if (cacheValue != null) {
    return cacheValue;
} else {
    synchronized(lockKey) {
         cacheValue = CacheHelper.get(cacheKey);
         if (cacheValue != null) {
              return cacheValue;
         } else {
              //这里一般是sql查询数据
              cacheValue = GetProductListFromDB();
              CacheHelper.Add(cacheKey, cacheValue, cacheTime);
        }
    }
    return cacheValue;
}

}

缓存标记方案伪代码:

//伪代码
public object GetProductListNew() {
    int cacheTime = 30;
    String cacheKey = "product_list";
    //缓存标记
    String cacheSign = cacheKey + "_sign";
String sign = CacheHelper.Get(cacheSign);
//获取缓存值
String cacheValue = CacheHelper.Get(cacheKey);
if (sign != null) {
    return cacheValue; //未过期,直接返回
} else {
    CacheHelper.Add(cacheSign, "1", cacheTime);
    ThreadPool.QueueUserWorkItem((arg) -> {
        //这里一般是 sql查询数据
         cacheValue = GetProductListFromDB();
         //日期设缓存时间的2倍,用于脏读
          CacheHelper.Add(cacheKey, cacheValue, cacheTime * 2);
 });
    return cacheValue;
}

} 

缓存穿透
缓存穿透是指用户查询数据,在数据库没有,自然在缓存中也不会有。这样就导致用户查询的时候,在缓存中找不到,每次都要去数据库再查询一遍,然后返回空(相当于进行了两次无用的查询)。这样请求就绕过缓存直接查数据库,这也是经常提的缓存命中率问题。
解决方案:
1.布隆过滤器,将所有可能存在的数据哈希到一个足够大的bitmap中,一个一定不存在的数据会被这个bitmap拦截掉,从而避免了对底层存储系统的查询压力。
2.如果一个查询返回的数据为空(不管是数据不存在,还是系统故障),我们仍然把这个空结果进行缓存,但它的过期时间会很短,最长不超过五分钟。通过这个直接设置的默认值存放到缓存,这样第二次到缓冲中获取就有值了,而不会继续访问数据库,这种办法最简单粗暴!
方案二伪代码:

//伪代码
public object GetProductListNew() {
    int cacheTime = 30;
    String cacheKey = "product_list";
String cacheValue = CacheHelper.Get(cacheKey);
if (cacheValue != null) {
    return cacheValue;
}

 cacheValue = CacheHelper.Get(cacheKey);
if (cacheValue != null) {
    return cacheValue;
} else {
    //数据库查询不到,为空
     cacheValue = GetProductListFromDB();
      if (cacheValue == null) {
           //如果发现为空,设置个默认值,也缓存起来
           cacheValue = string.Empty;
     }
     CacheHelper.Add(cacheKey, cacheValue, cacheTime);
     return cacheValue;
}

}

缓存预热
缓存预热这个应该是一个比较常见的概念,相信很多小伙伴都应该可以很容易的理解,缓存预热就是系统上线后,将相关的缓存数据直接加载到缓存系统。这样就可以避免在用户请求的时候,先查询数据库,然后再将数据缓存的问题!用户直接查询事先被预热的缓存数据!
解决思路:
1.直接写个缓存刷新页面,上线时手工操作下;
2.数据量不大,可以在项目启动的时候自动进行加载;
3.定时刷新缓存;
缓存更新
除了缓存服务器自带的缓存失效策略之外,我们还可以根据具体的业务需求进行自定义的缓存淘汰,常见的策略有两种:
1.定时去清理过期的缓存。
2.当有用户请求过来时,再判断这个请求所用到的缓存是否过期,过期的话就去底层系统得到新数据并更新缓存。
缓存降级
当访问量剧增、服务出现问题(如响应时间慢或不响应)或非核心服务影响到核心流程的性能时,仍然需要保证服务还是可用的,即使是有损服务。系统可以根据一些关键数据进行自动降级,也可以配置开关实现人工降级。
降级的最终目的是保证核心服务可用,即使是有损的。而且有些服务是无法降级的。
在进行降级之前要对系统进行梳理,看看系统是不是可以丢卒保帅;从而梳理出哪些必须誓死保护,哪些可降级;比如可以参考日志级别设置预案:
(1)一般:比如有些服务偶尔因为网络抖动或者服务正在上线而超时,可以自动降级;
(2)警告:有些服务在一段时间内成功率有波动(如在95~100%之间),可以自动降级或人工降级,并发送告警;
(3)错误:比如可用率低于90%,或者数据库连接池被打爆了,或者访问量突然猛增到系统能承受的最大阀值,此时可以根据情况自动降级或者人工降级;
(4)严重错误:比如因为特殊原因数据错误了,此时需要紧急人工降级。
对标阿里P6级架构师
获取更多学习资料,可以加群:473984645或扫描下方二维码
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值