🚀 Python + DeepSeek:打造拥有记忆的AI智能助手,让效率提升100倍!
🔥 Python开发者必看!你是否想用DeepSeek结合ChatGPT,打造一个真正能记住对话的AI助手?
python琛会手把手教你如何用Python代码,快速实现智能记忆+自动回复,让你的效率提升100倍!
🧠 AI也能有记忆?Python 赋予 DeepSeek 超强记忆力!
为什么AI需要拥有记忆?
还记得昨天的AI助手吗?它虽然能回答问题
但一到新对话就“失忆”,完全不记得你是谁
这样聊天像是在和金鱼对话!
为了让 AI 助手变得更像私人助理,我们要给它加点“记忆”能力,让它能回忆起之前的聊天内容。
怎么让DeepSeek打造的GTP-AI拥有记忆功能?
可以用数据库来存储聊天记录,比如SQLite或MySQL。
然后,每次对话时,把之前的记录拿出来,结合当前的输入,让 AI 能连续对话。
代码示例
import sqlite3
import datetime
# 连接数据库
conn = sqlite3.connect('chat_history.db', check_same_thread=False)
c = conn.cursor()
# 创建对话记录表
c.execute('''CREATE TABLE IF NOT EXISTS chat_history
(user_id TEXT, timestamp TEXT, message TEXT)''')
conn.commit()
# 存储对话记录
def save_chat_history(user_id, message):
c.execute("INSERT INTO chat_history (user_id, timestamp, message) VALUES (?, ?, ?)",
(user_id, datetime.datetime.now(), message))
conn.commit()
# 读取最近 5 条对话记录
def get_chat_history(user_id):
c.execute("SELECT message FROM chat_history WHERE user_id = ? ORDER BY timestamp DESC LIMIT 5", (user_id,))
return [row[0] for row in c.fetchall()]
📌 优化建议:
-
如果AI使用量大,建议换 PostgreSQL,并加个缓存优化。
-
还可以用LangChain这种工具来管理对话历史,省去自己写逻辑的麻烦。
🔧 让 AI 更智能:给它装上“技能包”
🌦 天气查询(出门前先问 AI)
import requests
def get_weather(city):
try:
url = f"https://api.weatherapi.com/v1/current.json?key=YOUR_API_KEY&q={city}"
response = requests.get(url)
data = response.json()
return f"{city} 现在是 {data['current']['temp_c']}°C,{data['current']['condition']['text']}"
except Exception as e:
return "天气查询失败,请检查 API Key 或网络连接!"
💡 优化建议:
-
使用缓存减少 API 请求次数,降低成本。
-
提前设置默认城市,防止用户输入错误。
🌍 翻译功能(秒变多国语言专家)
from deep_translator import GoogleTranslator
def translate_text(text, target_lang='en'):
return GoogleTranslator(source='auto', target=target_lang).translate(text)
🔍 信息检索(AI变身你的搜索助手)
import requests
def search_google(query):
url = f"https://www.googleapis.com/customsearch/v1?q={query}&key=YOUR_API_KEY&cx=YOUR_CX"
response = requests.get(url)
return response.json().get('items', [{}])[0].get('snippet', '未找到相关信息')
🌐 如何让 AI 助手 24 小时在线?
🚀 服务器部署(让AI全天候待命)
from flask import Flask, request, jsonify
app = Flask(__name__)
@app.route('/chat', methods=['POST'])
def chat():
user_id = request.json['user_id']
message = request.json['message']
response = generate_response_with_history(user_id, message)
return jsonify({'response': response})
if __name__ == '__main__':
app.run()
📌 优化建议:
-
用 FastAPI 替换 Flask,速度更快!
-
用 Docker 打包,部署更方便。
☁️ 云端部署(随时随地访问 AI)
可以选 AWS Lambda、Heroku、Vercel 这些平台,让 AI 在线 24 小时待命。
🚀 AI 还能更强?优化 + 未来展望
-
收集用户反馈:看看 AI 失误在哪里,优化模型。
-
增加高质量数据:好的训练数据=更智能的 AI。
-
尝试不同模型:DeepSeek 不够强?试试 GPT-4、Mistral-7B 等。
🌟 未来,AI 还能整合语音识别、图像处理、智能家居控制,让它帮你点外卖、管家电,变成真正的生活助手!