这个题目n^2的算法同样好想,usaco的测试数太给力啦,暴力竟然给70分。这个题目实际和上个题目类似,实际是求树上的逆序,所以将dfs序与树状数组结合起来。先将数据离散化。先做一次求值,搜索后再做一次求值,二者的差值就是这颗子树上的逆序。
#include <iostream>
#include <cstdio>
#include<algorithm>
using namespace std;
const int maxn = 1e5+10;
int n,m,b[maxn],head[maxn],cur=1,ans[maxn],t[maxn];
struct EDGE {
int to,next;
} edge[maxn];
void add(int u,int v) {
edge[cur].to=v;
edge[cur].next=head[u];
head[u]=cur++;
}
struct COW {
int v,id;
} a[maxn];
bool cmp(COW x,COW y) {
return x.v>y.v;
};
int lowbit(int x) {
return x&-x;
}
void update(int x,int v) {
for(; x<n; x+=lowbit(x))t[x]+=v;
}
int query(int x) { //查询比他小的数的个数 ,1.。x的个数 ,实际是比他大的个数
int ans=0;
for(; x; x-=lowbit(x))ans+=t[x];
return ans;
}
void dfs(int x) {
update(b[x],1);
ans[x]-=query(b[x]-1) ;
for(int i=head[x]; i>0; i=edge[i].next)
dfs(edge[i].to);
ans[x]+=query(b[x]-1);
}
int main() {
scanf("%d",&n);
for(int i=1; i<=n; i++)scanf("%d",&a[i].v),a[i].id=i; //逆序排序后离散化
sort(a+1,a+1+n,cmp);
for(int i=1; i<=n; i++)b[a[i].id]=i;
for(int i=2; i<=n; i++) {
int f;
scanf("%d",&f);
add(f,i);
}
dfs(1);
for(int i=1; i<=n; i++)printf("%d\n",ans[i]);
}
在网上看有你用线段树写的,实际是权值线段树。就又照着权值线段的模板写了一遍。还是能用树状数组就用它。
权值线段树的构建类似树状数组,将数据离散化后,标记数据i是否出现过,出现过,i的位置标志上1.
#include <iostream>
#include <cstdio>
#include<algorithm>
using namespace std;
const int maxn = 1e5+10;
struct Node {
int l,r,tot;
} tree[maxn*3];
int n,m,b[maxn],head[maxn],cur=1,ans[maxn];
struct EDGE {
int to,next;
} edge[maxn];
void add(int u,int v) {
edge[cur].to=v;
edge[cur].next=head[u];
head[u]=cur++;
}
struct COW {
int v,id;
} a[maxn];
bool cmp(COW x,COW y) {
return x.v<y.v;
};
void build(int l,int r,int o) {
tree[o].l=l;
tree[o].r=r;
if(tree[o].l==tree[o].r) return ;
int mid=(tree[o].l+tree[o].r)>>1;
build(l,mid,o<<1);
build(mid+1,r,o<<1|1);
}
void push_up(int o) {
tree[o].tot=tree[o<<1].tot+tree[o<<1|1].tot;
}
void update(int o,int x) {
if(tree[o].l==x && tree[o].l==tree[o].r) {
tree[o].tot++;
return ;
}
int mid=(tree[o].l+tree[o].r)>>1;
if(x<=mid) update(o<<1,x);
if(x>mid) update(o<<1|1,x);
push_up(o);
}
int query(int o,int l,int r) { //查询>=l的数的个数, 也就是比当前数l-1大的数的个数
if(tree[o].l>r || tree[o].r<l) return 0;
if(tree[o].l==l && tree[o].r==r) return tree[o].tot;
int mid=(tree[o].l+tree[o].r)>>1;
if(r<=mid) return query(o<<1,l,r);
if(l>mid) return query(o<<1|1,l,r);
return query(o<<1,l,mid)+query(o<<1|1,mid+1,r);
}
void dfs(int x) {
update(1,b[x]);
ans[x]-=query(1,b[x]+1,n) ;
for(int i=head[x]; i>0; i=edge[i].next)
dfs(edge[i].to);
ans[x]+=query(1,b[x]+1,n);
}
int main() {
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
scanf("%d",&n);
for(int i=1; i<=n; i++)scanf("%d",&a[i].v),a[i].id=i;
sort(a+1,a+1+n,cmp);
for(int i=1; i<=n; i++)b[a[i].id]=i;
build(1,n,1);
for(int i=2; i<=n; i++) {
int f;
scanf("%d",&f);
add(f,i);
}
dfs(1);
for(int i=1; i<=n; i++)printf("%d\n",ans[i]);
}