自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

lens_的博客

生活不止眼前的苟且

  • 博客(25)
  • 收藏
  • 关注

周志华《机器学习》第三章 - 线性模型

第三章 - 线性模型1.1 基本形式1.2 线性回归1.1 基本形式给定由 d 个属性描述的示例 x = (X1; X2;…; Xd) , 其中xi是 x在第 i个属性上的取值,线性模型 (linear model)试图学得一个通过属性的线性组合来进行预测的函数,即一般用向量形式写成其中 ω=(ω1 ;ω2;… ;ωd) ω 和 b 学得之后,模型就得以确定.线性模型形式简单、易于建...

2019-05-16 14:15:10 223

原创 周志华《机器学习》第二章 - 模型评估与选择

第二章 - 模型评估与选择1、课程笔记1.1 经验误差与过拟合1.2 评估方法1.2.1 留出法1.2.2 交叉验证法1、课程笔记1.1 经验误差与过拟合我们将学习器对样本的实际预测结果与样本的真实值之间的差异成为:误差(error)。定义:在训练集上的误差称为训练误差(training error)或经验误差(empirical error)。在测试集上的误差称为测试误差(test ...

2019-05-12 19:26:50 608

原创 周志华《机器学习》第一章 - 绪论

第一章 - 绪论1、课程笔记1.1 引言1.2 基本术语1.3 假设空间1.4 归纳偏好2、习题1、课程笔记傍晚小街路面上沁出微雨后的湿润,和熙的细风吹来,抬头看看天边的晚霞, 嗯,明天又是一个好天气.走到水果摊旁,挑了个根蒂蜷缩、敲起来声音浊响的青绿西瓜,一边满心期待着皮薄肉厚瓢甜的爽落感,一边愉快地想着,这学期狠下了工夫,基础概念弄得清清楚楚,算法作业也是信手拈来,这门课成绩一定差不了!...

2019-05-12 18:59:56 200

转载 Jupyter Notebook 中markdown编辑器的字体颜色设定

文章转载自:https://blog.csdn.net/hdoj_lin/article/details/757071411、换行:     1. 方法1:连续两个以上空格 + 回车     2. 方法2:使用html语言换行标签:<br> 2、首行缩进两个字符:(每个表示一个空格,连续使用两个即可)     1.   半角的空格    ...

2019-01-14 14:58:18 3385

原创 python numpy.linalg.norm函数的用法

1、linalg = linear(线性)+ algebra(代数),norm则表示范数。首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):2、函数参数x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False)x: 表示矩阵(也可以是一维) ord:范数类型参数 说明 计算方...

2019-01-03 15:17:47 13357

原创 机器学习基石——Lecture 2:Learning to Answer Yes/No

本节课将继续深入探讨机器学习问题,介绍感知机 Perceptron 模型,并推导课程的第一个机器学习算法: Perceptron Learning Algorithm(PLA) 2.1 Perceptron Hypothesis Set 感知器的假设集引例:某银行要根据用户的年龄、性别、年收入等情况来判断是否给该用户发信用卡。现在有训练样本 D,即之前用户的信息和是否发了信用卡。这是...

2018-12-10 16:28:48 196

原创 机器学习基石——Lecture 1:The Learning Problem

这门课由台湾大学林轩田老师讲授,主要分为四大部分:When Can Machine Learn?             在何时可以使用机器学习? Why Can Machine Learn?               为什么机器可以学习? How Can Machine Learn?               机器可以怎样学习? How Can Machine Learn Be...

2018-12-06 10:45:56 96

原创 python 读取文件的方式

文本文件读取三种方法:第一种方法直接读入file1 = open("test.txt") file2 = open("output.txt","w") while True: line = file1.readline() #这里可以进行逻辑处理 file2.write('"'+line[:s]+'"'+",") if not line:...

2018-11-30 10:29:00 208

原创 使用jupyter notebook 保存python代码为.py格式

Jupyter notebook 源自 Fernando Perez 发起的 IPython 项目。IPython 是一种交互式 shell,与普通的 Python shell 相似,但具有一些很好的功能(例如语法高亮显示和代码补全)。在jupyter notebook里输入:%%writefile train.pytrain_v = 10def train_add(list_n...

2018-11-23 10:47:52 20252

原创 机器学习笔记——00.Introduction of Machine Learning

台大李宏毅老师的机器学习课程笔记。传送门:下一课:李宏毅机器学习笔记——01.回归(Regression)人工智慧:是想要达成的目标 机器学习:达成目标的手段 深度学习:是机器学习的其中一种方法人类设定好的天生本能,永远无法超越创造者 (if...) What is Machine Learning?写程序让它具有学习的能力Machine Learning...

2018-11-22 15:56:10 180

原创 python 面向对象

类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。对象是类的实例。对象:通过类定义的数据结构实例。对象包括两个数据成员(类变量和实例变量)和方法。类变量:类变量在整个实例化的对象中是公用的。类变量定义在类中且在函数体之外。类变量通常不作为实例变量使用。实例变量:定义在方法中的变量,只作用于当前实例的类。对“类”和“对象”的使用...

2018-11-22 15:18:37 103

原创 python np.dot()函数的用法

numpy.dot(a,b)如果a和b都是一维数组,那么它返回的就是向量的内积。import numpy as npc = np.arange(0,9)d = c[::-1]np.dot(c,d) Out[35]: 84如果a和b都是二维数组,那么它返回的是矩阵乘法。 import numpy as npa = [[1, 0], [0, 1]]b = [[4, 1...

2018-11-20 15:17:38 9673 1

原创 python csv.reader() 与 pd.read_csv()的区别

csv.reader()返回一个reader对象,该对象将遍历csv文件中的行。从csv文件中读取的每一行都作为字符串列表返回。import csvimport pandas as pdr = []with open('train.csv',encoding = 'utf-8') as text: row = csv.reader(text, delimiter = ',...

2018-11-20 10:20:33 11403 3

原创 python numpy.power()函数的用法

numpy.power()用于数组元素求n次方numpy.power(x1, x2) :x2可以是数字,也可以是数组,但是x1和x2的列数要相同import numpy as npx1 = range(7)x1Out[1]: range(0, 7)np.power(x1,2)Out[2]: array([ 0, 1, 4, 9, 16, 25, 36], dtype=i...

2018-11-18 18:52:16 10221

原创 冒泡排序 python实现

冒泡排序的思想: 每次比较两个相邻的元素, 如果他们的顺序错误就把他们交换位置比如有五个数: 12, 35, 99, 18, 76, 从大到小排序, 对相邻的两位进行比较第一趟: 第一次比较: 35, 12, 99, 18, 76 第二次比较: 35, 99, 12, 18, 76 第三次比较: 35, 99, 18, 12, 76 第四次比较: 35, 99, 18, 76,...

2018-11-18 13:55:50 81

原创 递归经典案例汉诺塔 python实现

背景资料: 汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。  先上代码:首先看一下只有两个盘子的情况:def move(n, a...

2018-11-18 13:26:47 228

原创 python 常见字符串与函数的用法

目录strip去除空格大小写位置和比较分隔和连接常用判断函数函数定义与默认参数可变参数关键字参数命名关键字参数复杂情况函数可以作为参数递归 strip去除空格s = ' abcd efg 'print(s.strip()) #去除所有空格print(s.lstrip()) #去除左边空格print(s.rstrip...

2018-11-18 11:15:42 1125 2

原创 python 异常处理 - raise函数的用法

关键字raise是用来抛出异常的,一旦抛出异常后,后续的代码将无法运行。try: s = None if s is None: print ("s 是空对象") raise NameError #如果引发NameError异常,后面的代码将不能执行 print (len(s)) #这句不会执行,但是后面的except...

2018-11-18 10:04:15 1220

原创 让python pip使用国内镜像安装模块

国内源:豆瓣:http://pypi.douban.com/simple/清华大学:https://pypi.tuna.tsinghua.edu.cn/simple阿里云:http://mirrors.aliyun.com/pypi/simple/中国科技大学 https://pypi.mirrors.ustc.edu.cn/simple/山东理工大学:http://pypi....

2018-11-17 14:48:54 4211

原创 【Andrew Ng】 机器学习Exercise1——Linear Regression

1、单变量线性回归在本部分练习中,您将使用一个变量实现线性回归,以预测食品卡车的利润。假设你是一家连锁餐厅的首席执行官,正在考虑在不同的城市开设一家新分店。这个连锁店已经在不同的城市有了卡车,你可以从城市得到利润和人口的数据。您希望使用这些数据来帮助您选择下一个要扩展到的城市。文件ex1data1.txt包含线性回归问题的数据集。第一列是一个城市的人口第二列是那个城市的食品卡车的利润。...

2018-11-14 15:35:28 180

原创 matplotlib.pyplot contourf()函数的使用

matplotlib.pyplot contourf coutour([X, Y,] Z,[levels], **kwargs)是来绘制等高线的,contour和contourf都是画三维等高线图的,不同点在于contour() 是绘制轮廓线,contourf()会填充轮廓。除非另有说明,否则两个版本的函数是相同的。参数: X,Y:类似数组,可选   为Z中的坐标值...

2018-11-11 19:13:50 42415 1

原创 python numpy.meshgrid()函数的用法

numpy.meshgrid(*xi,**kwargs)从一个坐标向量中返回坐标矩阵。参数: x1,x2,...,xn:array_like   表示网格坐标的一维数组。   indexing:{'xy','ij'},可选   笛卡尔('xy',默认值)或矩阵('ij')输出索引。   sparse:布尔,可选   如果为True,则...

2018-11-10 14:16:00 1660

原创 python numpy.zeros()函数的用法

numpy.zeros(shape,dtype=float,order = 'C')返回给定形状和类型的新数组,用0填充。参数: shape:int 或 int 的元组   新阵列的形状,例如:(2,3)或2。   dtype:数据类型,可选   数组的所需数据类型,例如numpy.int8。默认是numpy.float64   ...

2018-11-10 12:12:26 41455

原创 python numpy.where()函数的用法

numpy.where(condition[,x,y])返回元素,可以是x或y,具体取决于条件(condition)如果只给出条件,则返回condition.nonzero()。对于不同的输入,where返回的值是不同的。参数: ccondition:array_llike,bool   如果为True,则产生x,否则产生y。   x,y:array_li...

2018-11-09 15:31:16 29223 1

原创 python numpy.nonzero()函数的用法

numpy.nonzero(a)返回非零元素的索引。返回一个数组元组,每个维度对应一个数组,包含该维度中非零元素的索引。可以通过以下方式获得相应的非零值:a[nonzero(a)]要按元素而不是维度对索引进行分组,请使用:transpose(nonzero(a))结果总是一个二维数组,每个非零元素都有一行。参数: a:array_like   输入数...

2018-11-09 11:41:50 1087

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除