- 博客(50)
- 资源 (6)
- 收藏
- 关注
原创 从零开始建立Web Service全自动开发与部署Pipeline
作为一个懒癌程序员,是否曾经畅想过用一套系统完成所有的开发工作?今天手把手教大家使用微软Azure全家桶,通过简单的配置,白嫖一套从任务分配到代码提交最终自动部署的全自动方案.首先,我们需要有一个微软的Azure账号.如果没有怎么办?那我们就从头开始建立一个!点击portal.azure.com选择 create one.接下来是电话+邮箱+验证码的一套组合,建议我们下载身份认证的软件并且扫描账号所提供的二维码,它可以在我们每一次登录的时候通过手机进行询问,省去了每一次输入密码的过程..
2021-04-10 14:56:27 532 2
原创 发一条“严肃“的招聘帖
为公司发一个"严肃"的招聘帖。公司是微软中国,招收软件设计工程师,工作地点北京/苏州/上海均可以选择。HR光速联系,面试形式多元,要求标准清晰,男女比例协调,工作时薪无敌。这里没有996,没有PUA,文化注重多元,生活丰富多彩。如果你想随时随地灵活办公,业余时间兼职创业无人干涉。如果你想在工作之余多留一点时间多陪陪家人。如果你想在工作中认识奇怪脑洞的同事,顺便解决自己人生大事。或者,你想拿一个外企当跳板,transfer去国外再拿大包。或者,你觉得我挺有意思,
2021-01-19 21:37:38 547 20
原创 caffe提特征py脚本
根据doc文件改的方便提caffe特征的py脚本#coding=utf-8import sys#############################caffe提特征的脚本##############################################我们可以从这里改变提特征的参数##########################step1 配置caffe的路径sys.
2017-03-02 10:54:03 659
原创 nv12转rgb 格式
https://shrex999.wordpress.com/2013/07/31/yuv-to-rgb-python-imaging-library/
2017-03-02 10:45:05 4052
原创 从caffe中新增layer(cpp版本)
在caffe 中增加一个什么都不做的layer(不考虑forward&backward算法,只考虑打通流程)英文教程 https://github.com/BVLC/caffe/wiki/Development#developing-new-layers一 修改 /src/caffe/proto/caffe.proto1 在 LayerParameter 增加optional MyLayerPara
2016-11-16 11:14:55 1458
翻译 Mesos Nvidia GPU Support 翻译
原文地址https://github.com/apache/mesos/blob/master/docs/gpu-support.mdMesos 在1.0.0 版本对英伟达公司的gpu进行了全面支持。Overview 在您了解几个关键步骤的情况下,mesos下运行gpu是非常简单直接的。其中之一是设置必要的Agent Flags,让他去列举gpu并且把它们交给mesos matser.在另一方面,
2016-10-28 17:57:05 2978 5
转载 DeviceMapper与docker
转载一篇将docker DeviceMapper 的好文! 原文地址Device Mapper 简介DeviceMapper自Linux 2.6被引入成为了Linux最重要的一个技术。它在内核中支持逻辑卷管理的通用设备映射机制,它为实现用于存储资源管理的块设备驱动提供了一个高度模块化的内核架构,它包含三个重要的对象概念,Mapped Device、Mapping Table、Target devi
2016-10-26 16:06:53 4635
原创 从aufs文件系统到docker镜像
概要1 aufs文件下系统是什么?有什么特性?2 aufs文件系统与docker镜像的关系。3 dockfile如何工作?4 docker镜像储存到哪里?储存的什么?5 docker镜像的储存过程简介。aufs文件下系统是什么?有什么特性?aufs文件系统全名为advanced multi-layered unification filesystem. 它能够将不同类型的文件系统透明地层叠在一起,
2016-10-22 15:05:00 4663 1
原创 这半年我干了些什么。
年初,做了一个膝盖韧带修复的手术,在家躺了三个月TAT。 回到实验室,接了小老板F的一个视频存储的项目。技术含量不高,但是是我第一个从头到尾参与并且自己制定规则的项目。感觉自己在这个项目中是法律的存在。如果这个项目真正商用,那时候我真可能膨胀爆炸。 随着研究生三年级的学长毕业离校,耳濡目染听他们说多A题,多A题。。。于是从寒假开始陆陆续续做了leetcode 的200个unlock的题目。
2016-08-23 11:27:13 700
原创 用caffe训练人工神经网络
Caffe 是一个做CNN的工具。但是如果我只想搭建一套普通的神经网络,那么应该怎么做呢?这篇文章参考了一下两篇文章来一发CNN搭建神经网络的实验。 http://nbviewer.ipython.org/github/joyofdata/joyofdata-articles/blob/master/deeplearning-with-caffe/Neural-Networks-with-
2016-01-12 19:45:29 3884 1
转载 理解LSTM
地址:http://www.jianshu.com/p/9dc9f41f0b29英文地址:http://colah.github.io/posts/2015-08-Understanding-LSTMs/最近看一篇可视化LSTM的文章《VISUALIZING ANDUNDERSTANDING RECURRENT NETWORKS》(建议一读)地址:http://arxi
2015-12-27 09:43:51 1604
原创 fast-rcnn训练实战
这一周训练了一个fast-rcnn网络,趁着还没有忘记先记一笔。关于图片检测detection这一类问题,随着CNN的流行出现了许多新的方法与系统。其中RCNN就是比较出名的一个。Rcnn的论文在此http://www.cs.berkeley.edu/~rbg/papers/r-cnn-cvpr.pdfcaffe里也实现了rcnn具体的demohttp://nbviewer
2015-12-12 16:04:00 11747 14
原创 阿里数据挖掘比赛总结
数据是广州市公交线路的历史公交刷卡数据(8月1号到12月31号),天气情况以及线路情况,要求预测未来一周(1月1号到1月7号)的公交车流量数据.
2015-11-28 19:46:39 2675 8
原创 caffe上图片分类的实践
本文紧接着上一篇 :http://blog.csdn.net/leo_is_ant/article/details/49183275 (训练实践)进行图片分类。 话说上回,我们已经训练出了数据的模型 caffe_model。下面我们用一个caffe提供的Python接口进行一次图片的分类练习。首先推荐一篇文章 链接在此:http://nbviewer.ipython.org/githu
2015-10-19 12:20:56 1715 2
原创 caffe训练网络的实践
Caffe现如今已经成为了深度学习一个非常火的框架。但是作为刚接触CNN或者caffe的小白可能对caffe的接口或者细节不是很清楚了解。本文作为尝试着利用caffe做一个简单的图片分类model,希望能够与大家快速入门caffe训练属于自己的数据。 首先,要准备自己的数据集。这次任务是训练手写的文本。请注意,并不是手写集Mnist,区别在于是手写完整的一页作为一类。一共有6类。肉眼看区别很
2015-10-16 21:38:15 2762 2
原创 opencv配置指南
今天配置了一把opencv,在vs2013,Python,IDEA(Java)上分别作了配置。总结成文档,分享给大家。搭建opencv+vs2013的环境安装opencv3.0 alpha 和 vs2013一:配置opencv的环境变量:1:在系统变量加入变量OPENCV新建按钮 --> 输入变量名和变量的值,注意对应路径。这么做
2015-07-22 16:01:55 1041
原创 Git初探
Git使用文档Git介绍首先我们要区分Git与Github。Github为代码托管网站,我们的代码会储存在远端Github(我们使用git@osc)服务器。而Git是指的帮助我们追踪本地文件的开源程序。使用Mac OS的同学可下载SourceTree软件,使用Windows的同学可下载GitExtension软件来协助我们管理代码并不需要打使用git pus
2015-06-09 14:17:04 830
原创 Python scikit-learn 学习笔记—PCA+SVM人脸识别
人脸识别是一项实用的技术。但是这种技术总是感觉非常神秘,在sklearn中看到了人脸识别的example,代码网址如下:http://scikit-learn.org/0.13/auto_examples/applications/face_recognition.html#example-applications-face-recognition-py 首先介绍一些PCA和SVM的功能
2015-05-16 10:17:37 15012 3
原创 Python scikit-learn 学习笔记—鸢尾花模型
鸢尾花数据是一个简易有趣的数据集。这个数据集来源于科学家在一岛上找到一种花的三种不同亚类别,分别叫做setosa,versicolor,virginica。但是这三个种类并不是很好分辩,所以他们又从花萼长度,花萼宽度,花瓣长度,花瓣宽度这四个角度测量不同的种类用于定量分析。基于这四个特征,这些数据成了一个多重变量分析的数据集。下面,我们就利用sklearn试着从不同的角度去分析一下这个数据集。
2015-04-30 17:26:22 15112
原创 Python scikit-learn 学习笔记—手写数字识别
这是一个手写数字的识别实验,是一个sklearn在现实中使用的案例。原例网址里有相应的说明和代码。 首先实验的数据量为1797,保存在sklearn的dataset里。我们可以直接从中获取。每一个数据是有image,target两部分组成。Image是一个尺寸为8*8图像,target是图像的类别,在我们看来类别就是手写的数字0-9. 代码一开始,将数据载入。# Standard
2015-04-28 12:14:32 12898
原创 Python scikit-learn 学习笔记—环境篇
Python scikit-learn 学习笔记—环境篇 近来闲来无事,也面临毕业季。这段时间除了做毕业设计,和同学再多吃几顿饭玩玩游戏之外。剩下的时间浪费着实可惜。想着以后研究生还要读三年,不如现在多看看书或者别的资料。正逢最近参加阿里巴巴大数据比赛,趁机学了一阵Python 数据挖掘包scikit learn,估计以后说不定会用到,所以先行记录下来,分享给大家。 先说
2015-04-28 10:38:41 2082
转载 NumPy教程
转载来自 http://www.tuicool.com/articles/r2yyei先决条件在阅读这个教程之前,你多少需要知道点python。如果你想从新回忆下,请看看 Python Tutorial .如果你想要运行教程中的示例,你至少需要在你的电脑上安装了以下一些软件:PythonNumPy这些是可能对你有帮助的:ipython 是一个净强化的交互Py
2015-04-25 11:51:06 1176
翻译 初探NO.4—SVM_guide教你直接用支持向量机
支持向量计算法(SVM)是一种流行的分类技术。然而,这一种技术对于一个初学者而言可能会感到陌生,进而忽略这个算法简单却至关重要的步骤以至于得不到满意的结果。在这个指南中,我们会介绍一种使用算法过程,利用这个过程希望能达到满意的结果。
2015-02-13 21:00:28 1681
原创 初探NO.3—从头到尾聊聊贝叶斯的分类方法2
上一篇梳理了一下朴素贝叶斯和贝叶斯估计的一点理论http://blog.csdn.net/leo_is_ant/article/details/43741261今天再接再厉利用《机器学习实战的python》来探究一下代码方面是如何落地的。首先说明一下,这一次的例子是一个文档的分类,文档的分类和上一篇写的理论稍有不同的是它对不同的文档进行了一次预处理,把所有文档做成了一个“字典”
2015-02-12 11:02:08 898
原创 初探NO.3—从头到尾聊聊贝叶斯的分类方法
宅在家无聊之余决定看着《概率论和数理统计》&《统计学习方法》总结一下朴素贝叶斯和贝叶斯估计。 正好这一块我最近温习了一下,我从一开始条件概率开始写,把我所理解的贝叶斯分类算法完整呈现一下吧。 学的概率论最开始是在高中,当时是条件概率,给出条件概率的定义:事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。 其次
2015-02-11 21:38:14 1350 2
转载 转载—图像深度学习准备篇
深度学习——数据预处理联系 前言: 本节主要是来练习下在machine learning(不仅仅是deep learning)设计前的一些数据预处理步骤,关于数据预处理的一些基本要点在前面的博文Deep learning:三十(关于数据预处理的相关技巧)中已有所介绍,无非就是数据的归一化和数据的白化,而数据的归一化又分为尺度归一化,均值方差归一化等。数据的白化常见的也有PC
2015-02-08 14:10:02 2401
原创 初探NO.2—离散分类问题&决策树的启示
决策树看起来挺好的那么它是如何学习出来的?这就需要我们再细细探究一番。通过观察会其实我们会发现这个树学习的关键是找出它的各个节点之间的排列次序,既然所有的叶子节点都是判断的结果,那么哪一个特征需要我们拿来作为根节点,哪一个会成为它子节点......其实决策树的精髓也在于此,只要我们知道怎么去给特征排序,那么问题基本就解决了。
2015-02-06 15:58:48 2907 1
原创 初探NO.1—逻辑回归学习的前前后后2
初探NO.1—逻辑回归学习的前前后后2 有些人觉得数学已经很复杂了,那么如果把它带入实现的编码环节是不是更加困难? 实际来讲确实有一些困难,但是稍作探究,就会发现其中的规律和套路。既然如此,不如耐心地把这一道心里上的坎过去,这样才是真正的进步。 这一篇博客的代码来自于《机器学习pthon实战》我们借着上一篇的逻辑回归,看一看当算法进入实现时候是如何做到的吧。
2015-02-05 16:27:18 932
原创 初探NO.1—逻辑回归学习的前前后后
初探NO.1—逻辑回归学习的前前后后 Leo突然消失了半个月,哈哈哈,因为我学车去了~大冬天的学车还是挺冷的。不过既然年前任务结束了,那就静下心来再写几篇博客吧~ 其实我发现我写完了算法初探之后,不知道如何继续下手。要么有些东西知道但是不知道如何表达,要么发现自己还是不能掌握其中的精髓,但是既然要写就干脆踏踏实实做,所以这一期我将给大家带来我学习的第一个算法—Logist
2015-02-02 22:11:25 1139
原创 算法中常见名词
所谓名正言顺~所以Leo 梳理这个之前打算先从这里面的一些名词说起。 名词篇: 1监督学习:任务是学习一个模型,使模型能够对任意给定的输入,对其相应的输出做出一个好的预测。它的最重要的一个方面就是学习的过程中有已知的训练样本。什么意思呢?就是在训练这一个模型的时候我们有可以拿来参考的例子。我们根据这些例子为后来的判断预测做出结果。 2无监督学习:这个和监督学习相对应。他
2015-01-22 09:05:07 1646
原创 大学学习笔记—单片机第五章
系统扩展:MCS—51最小系统:能使单片机运行的最少期间构成的系统。对于8031必须拓展ROM 对于8051只要有复位晶振电路即可。外部程序储存器的拓展。外部数据储存器的拓展。输入输出接口的拓展。MCS—51总线拓展技术总线:用来连接计算机系统中各扩展部件得公共连接信号线。三总线结构地址总线:用于实现计算机与外部器件之间地址信号的传递(编制与寻址) P2提供地址
2015-01-18 10:41:41 836
原创 大学学习笔记—单片机第四章
定时器,串行口以及中断系统,中断系统的基本概念:CPU正在处理某任务的过程中,由于计算机内外原因,发生的某一事件请求CPU及时处理于是CPU暂停当前的工作,自动转去处理所发生的事情。处理玩事件之后,再返回原来被终止的断点处继续工作,这样的过程称为中断。相关概念:中断系统:实现中断功能的硬件系统和软件系统统称为中断系统中断源:产生中断请求源称为中断源中断请求:
2015-01-18 10:41:05 978
原创 大学学习笔记—单片机第三章
例题1:题目 A的BCD码为(56)BCD ,B的BCD码为(67)BCD,执行以下指令ADD A, R2DA A 分析指令执行后的结果 第三章PPT 76例题2:题目 编写2个十六进制数的加法程序,假定和数超过双字节。(21H 20H)+(31H 30H)——>( 42H 41H 40H )分析:线低字节作不带进位求和,再作带进位高字节求和。MOV A ,2
2015-01-18 10:39:49 955
原创 大学学习笔记—单片机第二章
单片夹 软件系统寻址方式 指令系统指令:操纵计算机完成特定功能的集合指令系统:全部指令的集合程序: 指令序列 程序设计:编写程序的过程程序设计语言:实现人机交互的基本工具机器语言 汇编语言 高级汇编语言指令格式:【标号】 操作码 【目的操作数】 【源操作数】 【注释】 注释行,在最后的操作数上接一个分号,分号后面是注释。汇编语言与机器指令代码存在
2015-01-18 10:39:05 857
原创 大学学习笔记—单片机第一章
大二单片机课程,用的8051,当时的笔记和复习资料。Yeah~第一章 内部结构:除了CPU之外,还包含了程序储存器,数据储存器,定时计数器,并行串行IO接口,总线控制逻辑,终端控制逻辑。CPU结构以及工作原理:CPU由运算器和控制器部件构成。运算器 : 8位算数和逻辑运算单元ALU 计算中心 8位寄存器
2015-01-18 10:34:53 989
原创 算法—概述&理解
关于算法,包括我相信很多一开始学习的新手(包括Leo)。都不知道从哪里开始下手,甚至于说,算法的概念都很模糊。我写着一篇博客,想从我接受算法的过程一点一点阐述我对这东西的理解。最后再给出一点我看别人的观点和官方的解释,希望通过分享我的历程来给以后学习这一块的人们一点铺垫,大家且看且指正,THX~ 最开始接触算法,我想我是在高中数学,有一学期的必修课我们学的是流程框图这一块(后来在大学就
2015-01-18 10:27:34 627
原创 算法初探
哈哈,Leo又来CSDN瞎写啦。 想来最近真的是闲来无事呀。放假就是轻松,就是任性。可以花时间做点自己想做的事情。不过,回想起之前几年,一旦放假就拿大把大把的时间去打DOTA和LOL,还真是有些对不起自己。之前的半年左右吧,临近毕业了,Leo也本着对自己未来负责的宗旨。去了一家还不错的通信公司实习了小半年。虽然是通讯公司,但是我被分到了其中的电软部门,做一些算法和用户行为分析的数据挖掘
2015-01-15 10:27:06 495
原创 设计模式—渐进版推荐
恩恩,写这一片博客的时候,整个学期学的设计模式也算是告一段落。 在写着一些博客的途中,Leo借鉴参照了一些大神的博客和一些内容。里面就讲了很多的超过设计模式的设计原则,和更加具体的类图和例子。我在这里把这些文章的地址给大家引用出来,希望作为设计模式的渐进版本,咱们大家共同学习哈~ 1 设计模式& python实现http://www.cnblogs.com/wuyuegb2
2015-01-15 10:22:36 454
原创 设计模式初探
Hello,大家好~这是Leo在CSDN上第一次写博客,里面不足之处请大家多多包涵哈。 这学期有幸选学了学校的面向对象的课程,作为一个信息科学的IOT的学生,听软件学院的老师讲一些纯软件的课程也是蛮拼的。 在这学期课上主要讲了一些面向对象的一些特点和方法,重点给我们说了一些有关于软甲设计的设计模式。作为只学过C语言的渣渣有的时候实在是力不从心~ 不过话说回
2015-01-14 19:04:03 535
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人