机器学习
Leo_whj
学习者
展开
-
机器学习牛人主页及相关会议,论文和期刊
国际顶级会议AAAICIKM 2010CIKM 2011COLT 2010COLT 2011Computer Vision ResourceICJIAICMLNIPSSIGIR 2010SIGIR 2011SIGKDDSIGKDD2010论文搜索CV顶级会议论文下载google 学术搜索超全计算机视觉资源汇总联合参考文献学术牛人主页feifei li -co转载 2017-10-12 13:18:12 · 1914 阅读 · 0 评论 -
人工智能领域的会议和期刊
http://blog.csdn.net/ariessurfer/article/details/7936860转载 2017-10-12 13:20:08 · 2632 阅读 · 0 评论 -
Fisher准则函数
Fisher 线性分类器由R.A.Fisher在1936年提出,至今都有很大的研究意义,下面介绍Fisher分类器的Fisher准则函数 Fisher准则函数在模式识别的分类算法中,大概可以分为两类,一种是基于贝叶斯理论的分类器,该类型分类器也称为参数判别方法,根据是基于贝叶斯理论的分类器必须根据所提供的样本数据求出先验概率和类概率密度函数的类型和参数;另一种是非参数判别方法,它倾向于转载 2018-01-10 19:02:21 · 2016 阅读 · 0 评论 -
线性判别分析LDA原理总结
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结。这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了解下它的算法原理。 在学习LDA之前,有必要将其自然语言处理领域的LDA区别开来,在自然语言处...转载 2018-07-10 11:41:01 · 263 阅读 · 0 评论 -
谱聚类(spectral clustering)原理总结
谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时聚类的计算量也小很多,更加难能可贵的是实现起来也不复杂。在处理实际的聚类问题时,个人认为谱聚类是应该首先考虑的几种算法之一。下面我们就对谱聚类的算法原理做一个总结。1. 谱聚类概述 谱聚类是从图论中演化出来的算法,后来在聚类中得到了广泛的应用...转载 2018-07-10 14:55:43 · 517 阅读 · 0 评论 -
机器学习算法-1最小二乘法
一、是什么? 最小二乘法(又称最小平方法)是一种数学优化技术。二、能做什么? 最小化误差平方和找数据最佳匹配函数,来求得未知数据。用来拟合曲线,解决回归问题。三、原理?对于一元线性回归模型, 假设从总体中获取了n组观察值(X1,Y1),(X2,Y2), …,(Xn,Yn)。对于平面中的这n个点,可以使用无数条曲线来拟合。要求样本回归函数尽可能好地拟合这组值。综合起来看,这条直线处于样本...原创 2018-07-04 09:27:23 · 571 阅读 · 0 评论