这个题目挺难想的,,就算知道怎么做,都不太好写。。
思路是这样的:一共有n种货币,我们已知每种货币的面值v和数量b,我们也知道每周至少要支付c。那么如果有某种货币的面值超过c,那么这种货币就可以直接支付b个星期,然后将其数量置为0.
对于另外的货币,我们按照面值从大到小先每个拿尽量多的,只要不超过c.如果没有拿够c,那么我们就从小到大的拿,而且一张一张拿,拿到直到c,然后计算所有使用过的货币所能支付最少的时间。其实就是要先拿大的,尽量接近c,然后再从小的达到或者超过c。
#include<stdio.h>
#include<iostream>
#include<string>
#include<string.h>
#include<algorithm>
#include<iomanip>
#include<vector>
#include<time.h>
#include<queue>
#include<stack>
#include<iterator>
#include<math.h>
#include<stdlib.h>
#include<limits.h>
#include<map>
#include<set>
#include<bitset>
//#define ONLINE_JUDGE
#define eps 1e-8
#define INF 0x7fffffff
#define FOR(i,a) for((i)=0;i<(a);(i)++)
#define MEM(a) (memset((a),0,sizeof(a)))
#define sfs(a) scanf("%s",a)
#define sf(a) scanf("%d",&a)
#define sfI(a) scanf("%I64d",&a)
#define pf(a) printf("%d\n",a)
#define pfI(a) printf("%I64d\n",a)
#define pfs(a) printf("%s\n",a)
#define sfd(a,b) scanf("%d%d",&a,&b)
#define sft(a,b,num) scanf("%d%d%d",&a,&b,&num)
#define for1(i,a,b) for(int i=(a);i<b;i++)
#define for2(i,a,b) for(int i=(a);i<=b;i++)
#define for3(i,a,b)for(int i=(b);i>=a;i--)
#define MEM1(a) memset(a,0,sizeof(a))
#define MEM2(a) memset(a,-1,sizeof(a))
#define ll __int64
const double PI=acos(-1.0);
template<class T> T gcd(T a,T b){return b?gcd(b,a%b):a;}
template<class T> T lcm(T a,T b){return a/gcd(a,b)*b;}
template<class T> inline T Min(T a,T b){return a<b?a:b;}
template<class T> inline T Max(T a,T b){return a>b?a:b;}
using namespace std;
//#pragma comment(linker,"/STACK:1024000000,1024000000")
int n,m;
#define M 110
#define N 1000010
#define Mod 258280327
#define p(x,y) make_pair(x,y)
const int MAX_len=550;
struct Node{
int v,b;
bool operator < (const Node &x) const{
return v<x.v;
}
}a[25];
int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
// freopen("out.txt", "w", stdout);
#endif
int c;
while(sfd(n,c)!=EOF){
for(int i=0;i<n;i++){
sfd(a[i].v,a[i].b);
}
sort(a,a+n);
int ans=0;
for(int i=0;i<n;i++){
if(a[i].v>=c){
ans += a[i].b;
a[i].b = 0;
}
}
int used[25];
while(1){
int flag=0;
int res=c;
memset(used,0,sizeof used);
for(int i=n-1;i>=0;i--){ //从大到小
if(a[i].b){ //如果这个货币还有的话
int tmp = res/a[i].v; //计算需要a[i].v这种面值的货币几张
int mi = Min(a[i].b,tmp); //最多不能超过a[i].b
res -= mi*a[i].v;
used[i] = mi; //第i种货币使用了mi张
if(res<=0){
flag=1;
break;
}
}
}
if(res>0){
for(int i=0;i<n;i++){ //从小到大取,有多少拿多少
if(a[i].b>used[i]){ //如果第i种货币的数量没用完
while(a[i].b>used[i]){ //有多少取多少
res -= a[i].v; //一张一张取
used[i]++; //使用量+1
if(res<=0){ //能达到c
flag=1;
break;
}
}
if (res <= 0)
break;
}
}
}
if(!flag)break; //如果无法达到c,说明无法继续支付工资
int mi=INF;
for(int i=n-1;i>=0;i--)
if(used[i])
mi = Min(mi,a[i].b/used[i]); //计算这种方案中所有使用的货币中最少用几天(即能够用几天) a[i].b/used[i]
ans += mi; //
for(int i=n-1;i>=0;i--)
if(used[i])
a[i].b -= (mi*used[i]); //更新所有货币的数量
}
pf(ans);
}
return 0;
}