LCS:最长公共子串

24 篇文章 0 订阅
24 篇文章 0 订阅

LCS问题就是求两个字符串最长公共子串的问题。解法就是用一个矩阵来记录两个字符串中所有位置的两个字符之间的匹配情况,若是匹配则为1,否则为0。然后求出对角线最长的1序列,其对应的位置就是最长匹配子串的位置。

改进:

当字符匹配的时候,我们并不是简单的给相应元素赋上1,而是赋上其左上角元素的值加一。我们用两个标记变量来标记矩阵中值最大的元素的位置,在矩阵生成的过程中来判断当前生成的元素的值是不是最大的,据此来改变标记变量的值,那么到矩阵完成的时候,最长匹配子串的位置和长度就已经出来了。

/

//最长公共子序列

///c[i][j]保存字符串 {xi},{yj},(长度分别为i,j)的最长公共子序列的字符个数

///i=0或者是j=0 时,c[i][j]必定为零, i,j>=0 且 xi=yj, c[i][j]=c[i-1][j-1]+1

///若 i,j>0 但xi!=yj, c[i][j]=max{ c[i-1][j] , c[i][j-1] }

#include <stdio.h>

#include <string.h>

int c[1001][1001];

void lcs(int a, int b, char x[], char y[], int c[][1001])

{

int i,j;

for(i=1;i<a;i++)

   c[i][0]=0; //if b==0, set c[i][j]=0;

for(i=1;i<b;i++)

   c[0][i]=0; // if a==0; set c[i][j]=0;

for(i=1;i<=a;i++) // if a!=0,b!=0 loop

   for(j=1;j<=b;j++)

   {

    if(x[i-1]==y[j-1])

     c[i][j]=c[i-1][j-1]+1;

    else if (c[i-1][j]>=c[i][j-1])

     c[i][j]=c[i-1][j];

    else

     c[i][j]=c[i][j-1];

   }

 

}

int main()

{

char x[1001],y[1001];

while ( scanf("%s%s",x,y)!=EOF )

{

   int a=strlen(x);

   int b=strlen(y);

   memset(c,0,sizeof(c));

   lcs(a,b,x,y,c);

 

   printf("%d/n",c[a][b]);

}

 

return 0;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值