Tarjan O(n+m) 算法【转】

对于强连通相关概念可参考这里

推荐BYV大牛的文章

O(n+m)

http://www.byvoid.com/blog/scc-tarjan/

****************************************************************************************************************************************************************************************

以下转自【http://www.cnblogs.com/saltless/archive/2010/11/08/1871430.html】

说到以Tarjan命名的算法,我们经常提到的有3个,其中就包括本文所介绍的求强连通分量的Tarjan算法。而提出此算法的普林斯顿大学的Robert E Tarjan教授也是1986年的图灵奖获得者(具体原因请看本博“历届图灵奖得主”一文)。

      首先明确几个概念。

  1. 强连通图。在一个强连通图中,任意两个点都通过一定路径互相连通。比如图一是一个强连通图,而图二不是。因为没有一条路使得点4到达点1、2或3。
  2. 强连通分量。在一个非强连通图中极大的强连通子图就是该图的强连通分量。比如图三中子图{1,2,3,5}是一个强连通分量,子图{4}是一个强连通分量。


      关于Tarjan算法的伪代码和流程演示请到我的115网盘下载网上某大牛写的Doc(地址:http://u.115.com/file/f96af404d2<Tarjan算法.doc>)本文着重从另外一个角度,也就是针对tarjan的操作规则来讲解这个算法。

      其实,tarjan算法的基础是DFS。我们准备两个数组Low和Dfn。Low数组是一个标记数组,记录该点所在的强连通子图所在搜索子树的根节点的Dfn值(很绕嘴,往下看你就会明白),Dfn数组记录搜索到该点的时间,也就是第几个搜索这个点的。根据以下几条规则,经过搜索遍历该图(无需回溯)和对栈的操作,我们就可以得到该有向图的强连通分量。

 

  1. 数组的初始化:当首次搜索到点p时,Dfn与Low数组的值都为到该点的时间。
  2. 堆栈:每搜索到一个点,将它压入栈顶。
  3. 当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’不在栈中,p的low值为两点的low值中较小的一个。
  4. 当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’在栈中,p的low值为p的low值和p’的dfn值中较小的一个。
  5. 每当搜索到一个点经过以上操作后(也就是子树已经全部遍历)的low值等于dfn值,则将它以及在它之上的元素弹出栈。这些出栈的元素组成一个强连通分量。
  6. 继续搜索(或许会更换搜索的起点,因为整个有向图可能分为两个不连通的部分),直到所有点被遍历。

      由于每个顶点只访问过一次,每条边也只访问过一次,我们就可以在O(n+m)的时间内求出有向图的强连通分量。但是,这么做的原因是什么呢?

 

      Tarjan算法的操作原理如下:

  1. Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说,强连通分量一定是有向图的某个深搜树子树。
  2. 可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。
  3. 这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
  4. 强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。
  5. 如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。
模板【vector版】:
vector<int> v[N];    
int ans[N];    
stack<int> s;    
bool vis[N];    
bool inStack[N];    
int low[N],dfn[N];//dfn(u)为节点u搜索的次序编号(时间戳),low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号
int belong[N];//属于哪个强连通分量    
int out[N];    
int n,m,step,t;    
    
void init()    
{    
    int i;    
    for(i=0;i<=n;i++)    
    {    
        v[i].clear();    
    }    
    while(!s.empty())s.pop(); step = t = 0;   
}    
    
void tarjan(int u)    
{    
    vis[u]=true;    
    step++;    
    s.push(u);    
    inStack[u]=true;    
    low[u]=step,dfn[u]=step;    
    int i,j;    
    for(i=0;i<v[u].size();i++)    
    {    
        int x=v[u][i];    
        if(!vis[x])    
        {    
            tarjan(x);    
            low[u]=min(low[u],low[x]);    
        }    
        else    
        if(inStack[x])    
        low[u]=min(low[u],dfn[x]);    
    }    
    if(low[u]==dfn[u])    
    {    
        t++;    
        while(1)    
        {    
            int x=s.top();    
            s.pop();    
            belong[x]=t;    
            inStack[x]=false;//重新设为不在栈中  
            if(x==u)break;    
        }    
    }    
}    

 

【二维数组版】
int n;  
bool g[N][N];  
bool vis[N];  
bool inStack[N];  
int out[N],in[N];  
int belong[N];  
int low[N],dfn[N];  
stack<int> st;  
int t;//the number of 强连通分量  
int step;  
  
int min(int a,int b)  
{  
    return a>b?b:a;  
}  
int max(int a,int b)  
{  
    return a>b?a:b;  
}  
void init()  
{  
    int i,j;  
    memset(g,0,sizeof(g));  
    memset(vis,0,sizeof(vis));  
    memset(belong,0,sizeof(belong));  
    memset(inStack,0,sizeof(inStack));  
    while(!st.empty())st.pop();  step = t = 0;
}  
void tarjan(int u)  
{  
    int i,j,k;  
    step++;  
    low[u]=step;  
    dfn[u]=step;  
    vis[u]=1;  
    inStack[u]=1;  
    st.push(u);  
    for(i=1;i<=n;i++)  
    {  
        if(g[u][i])  
        {  
            if(!vis[i])  
            {  
                tarjan(i);  
                low[u]=min(low[u],low[i]);  
            }  
            else  
            if(inStack[i])  
            low[u]=min(low[u],dfn[i]);  
        }  
    }  
    if(low[u]==dfn[u])  
    {  
        t++;  
        while(1)  
        {  
            int a=st.top();  
            st.pop();  
            belong[a]=t;  
            inStack[a]=0;  
            if(a==u)break;  
        }  
    }  
}  




















  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值