【后缀数组求最长回文子串】POJ 3974

MLE了...囧,不过算法是正确的

#define maxn 2000010
int wa[maxn],wb[maxn],wv[maxn],wss[maxn];
int r[maxn],sa[maxn];
int cmp(int *r,int a,int b,int l)
{return r[a]==r[b] && r[a+l]==r[b+l];}
void da(int *r,int *sa,int n,int m){//n要加1
     int i,j,p,*x=wa,*y=wb,*t;
     for(i=0;i<m;i++) wss[i]=0;
     for(i=0;i<n;i++) wss[x[i]=r[i]]++;
     for(i=1;i<m;i++) wss[i]+=wss[i-1];
     for(i=n-1;i>=0;i--) sa[--wss[x[i]]]=i;
     for(j=1,p=1;p<n;j*=2,m=p){
         for(p=0,i=n-j;i<n;i++) y[p++]=i;
         for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
         for(i=0;i<n;i++) wv[i]=x[y[i]];
         for(i=0;i<m;i++) wss[i]=0;
         for(i=0;i<n;i++) wss[wv[i]]++;
         for(i=1;i<m;i++) wss[i]+=wss[i-1];
         for(i=n-1;i>=0;i--) sa[--wss[wv[i]]]=y[i];
         for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
         x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
     }
     return;
}
int rank[maxn],height[maxn];//rank[i]:i排第几;sa[i]:排第i的后缀串在哪里,互为逆运算

void calheight(int *r,int *sa,int n){//n不用加1
     int i,j,k=0;
     for(i=1;i<=n;i++) rank[sa[i]]=i;
     for(i=0;i<n;height[rank[i++]]=k){
        for(k?k--:0,j=sa[rank[i]-1];r[i+k]==r[j+k];k++);
     }
     return;
}
int dp[20][maxn];
void init_rmq(int n){
    int i,j;
    for(i=1;i<=n;i++){
        dp[0][i] = height[i];
    }
    int t = floor(log((double)n)/log(2.0));//向下取整
    for(i=1;i<=t;i++){
        for(j=1;j+(1<<(i-1))<=n;j++){
            dp[i][j] = min(dp[i-1][j],dp[i-1][j+(1<<(i-1))]);
        }
    }
}
int lcp(int i,int j){//i开始的后缀,j开始的后缀,返回二者lcp
    i = rank[i],j = rank[j];
    if(i>j)swap(i,j);
    i++;
    int k = floor(log((j-i+1)*1.0)/log(2.0));
    return min(dp[k][i],dp[k][j-(1<<k)+1]);
}
char str[maxn/2];
int main(){
    int t=1;
    while(scanf("%s",str)){
        if(strcmp(str,"END") == 0)break;
        int i,j;
        int len = strlen(str);
        int n = 0;
        for(i=0;i<len;i++){
            r[n++] = str[i];
        }
        r[n++] = '#';
        for(i=len-1;i>=0;i--){
            r[n++] = str[i];
        }
        r[n] = 0;
        da(r,sa,n+1,199);
        calheight(r,sa,n);
        init_rmq(n);
        int ans=0;
        for(i=0;i<len;i++){
            int tmp = lcp(i,n-i-1);//处理奇数
            ans = max(ans,2*tmp-1);
            tmp = lcp(i,n-i);//处理偶数
            ans = max(ans,2*tmp);
        }
        printf("Case %d: %d\n",t++,ans);
    }
    return 0;
}

后缀数组虽然强大,但是缺点就是常数大,空间大,就像这题。。。改用扩展kmp就明显不同,空间、时间都有明显改进,思路参考这里http://greatkongxin.blog.163.com/blog/static/17009712520117285717159/ 复杂度为O(nlgn)

#define N 1100100
int b[N];
void ex_kmp(char *s,char *t,int ls,int lt,int *a){
    int i,j,k;
    j = 0;
    while(j+1<lt && t[j]==t[j+1])j++;
    b[0] = lt,b[1] = j,k = 1;
    for(i=2;i<lt;i++){
        int Len = k+b[k],L = b[i-k];
        if(i+L < Len){
            b[i] = L;
        } else {
            j = max(0,Len-i);
            while(i+j<lt && t[i+j]==t[j]){
                j++;
            }
            b[i] = j,k = i;
        }
    }
    j = 0;
    while(s[j]==t[j])j++;
    a[0] = j,k = 0;
    for(i=1;i<ls;i++){
        int Len = k+a[k],L = b[i-k];
        if(i+L < Len){
            a[i] = L;
        } else {
            j = max(0,Len-i);
            while(i+j<ls && s[i+j]==t[j]){
                j++;
            }
            a[i] = j,k = i;
        }
    }
}
char s[N],t[N]; //s是主串,t是匹配串,下标均从1开始
int a1[N], a2[N];
char str[N];
int ans;
void dfs(char *str,int n){
    int i,j;
    if(ans>=n || n<2)return;
    int mid = (n>>1);
    for(i=mid;i<n;i++){
        t[i-mid] = str[i];
    }t[i-mid] = '\0';
    for(i=n-1;i>=0;i--){
        s[n-i-1] = str[i];
    }s[n-i-1] = '\0';
    ex_kmp(s,t,n,n-mid,a1);

    ///
    for(i=0;i<mid;i++){
        t[i] = str[mid-i-1];
    }t[i] = '\0';
    for(i=0;i<n;i++){
        s[i] = str[i];
    }s[i] = '\0';//
    ex_kmp(s,t,n,mid,a2);
    a1[n] = a2[n] = 0;
    for(i=0;i<mid;i++){
        if(a2[i]>=mid-i){
            int x = mid-i+2*a1[n-i];
            ans = max(ans,x);
        }
    }
    for(i=mid;i<n;i++){
        if(a1[n-i]>=i-mid){
            int x = i-mid+2*a2[i];
            ans = max(ans,x);
        }
    }
    dfs(str,mid);
    dfs(str+mid,n-mid);
}
int main(){FRE;
    int ca = 1;
    while(scanf("%s",str) && str[0]!='E'){
        int len = strlen(str);
        ans = 1;
        dfs(str,len);
        printf("Case %d: %d\n",ca++,ans);
    }
    return 0;
}


















评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值