自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(3)
  • 资源 (2)
  • 收藏
  • 关注

转载 机器学习中的置信区间与置信度

看到一篇机器学习中的置信区间与置信度很好的文章链接:https://www.techug.com/post/a-very-friendly-introduction-to-confidence-intervals.html本文讨论了统计学中的一个基本术语 :置信区间。我们仅以一种非常友好的方式讨论一般概念,没有太多花哨的统计术语,同时还会使用 Python 完成简单的实现!尽管这个术语是非常基础的,但我们有时很难完全理解置信区间到底是什么,为什么我们需要它。假设你想知道美国有多少人热爱足球。为了得到 1

2021-12-02 15:59:52 4300

原创 【全文翻译】MixMatch: A Holistic Approach to Semi-Supervised Learning

【全文翻译】MixMatch: A Holistic Approach to Semi-Supervised Learning摘要半监督学习已被证明是利用未标记数据来减轻对大型标记数据集的依赖的强大范例。在这项工作中,我们统一了当前的半监督学习主导方法,以产生一种新算法MixMatch,该算法猜测数据增强的未标记示例的低熵标记,并使用MixUp混合标记和未标记的数据。MixMatch可在许多数据集和标记的数据量上大幅度获取最新的结果。 例如,在具有250个标签的CIFAR-10上,我们将错误率降低4倍(

2021-12-01 19:32:02 2308

原创 Hadoop cdh版本配置

Hadoop cdh版本配置1. 准备3台虚拟机192.168.48.121 iflysse01192.168.48.122 iflysse02192.168.48.123 iflysse03在iflysse01创建图中文件夹并把tar包放到cdh中2. vim /etc/sysconfig/network

2021-03-16 20:03:36 276

机器学习 深度半监督网络总结

深度半监督学习总结,包括一致性,最小化熵,数据增强

2021-11-30

主元分析PCA理论分析及应用.doc

PCA是Principal component analysis的缩写,中文翻译为主元分析。它是一种对数据进行分析的技术,最重要的应用是对原有数据进行简化。正如它的名字:主元分析,这种方法可以有效的找出数据中最“主要”的元素和结构,去除噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。它的优点是简单,而且无参数限制,可以方便的应用与各个场合。因此应用极其广泛,从神经科学到计算机图形学都有它的用武之地。被誉为应用线形代数最价值的结果之一

2021-11-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除