越哥聊AI
互联网技术专家,阿里云MVP,任职淘宝、美团,著有《分布式技术原理与实战》,拉勾网、InfoQ讲师、人人都是产品经理专栏作者,分享互联网架构,关注认知升级
展开
-
AI电商提出2年,现在到底落地到哪里了?
那么,两年过去了,AI电商到底走到了哪一步?有哪些真实落地的场景?哪些吹过的牛实现了,哪些还在路上?原创 2025-04-30 12:16:12 · 309 阅读 · 0 评论 -
解读 AI绘画工作流ComfyUI Stable Diffusion
ComfyUI是一个基于节点流程的Stable Diffusion操作界面,通过自定义节点、拖拽连线实现精准的工作流定制,以完成更复杂的图像生成工作。原创 2025-04-30 15:09:49 · 196 阅读 · 0 评论 -
在阿里云实例上部署通义千问QwQ-32B推理模型
通义千问QwQ-32B是阿里云开源的320亿参数推理模型,通过大规模强化学习在数学推理、编程及通用任务中实现性能突破,支持消费级显卡本地部署,兼顾高效推理与低资源消耗。本文将介绍如何利用vLLM作为通义千问QwQ-32B模型的推理框架,在一台阿里云GPU实例上构建通义千问QwQ-32B的推理服务。在GPU实例上部署通义千问QwQ-32B模型,需要提前在该实例上安装GPU驱动且驱动版本应为550及以上版本,建议您通过ECS控制台购买GPU实例时,同步选中。原创 2025-04-29 18:41:10 · 315 阅读 · 0 评论 -
阿里云ECS上基于 WordPress 一键部署网站
在阿里云 ECS 上部署一个基于。原创 2025-04-24 19:53:27 · 340 阅读 · 0 评论 -
阿里开源通义千问3,性能力压DeepSeek,成本仅需三分之一!
记住,开源不是落后者自救,是领先者亮剑。未来,国产大模型的胜负手,一定还在路上。但今晚,属于阿里,也属于所有愿意相信技术力量的人。原创 2025-04-29 18:41:57 · 179 阅读 · 0 评论 -
抖音公开推荐算法细节了!看完才知道,我们其实一直被误会了
在他们的官网上,首次系统性公开了抖音推荐算法的核心原理,包括背后的数学逻辑、模型演化路径,甚至是如何预测我们会不会点赞、评论、转发!原创 2025-04-23 15:52:23 · 956 阅读 · 0 评论 -
一次Token是一次调用?你可能误解了大模型的计费单位
关键词理解方式Token 是什么处理文本的最小单位,不等于字或词Token 用来干嘛模型输入输出的计费依据Token 怎么算按字符分割,有经验公式和工具可查如何节省 Token优化提示词、控制 max_tokens、拆分上下文Token 的底层意义是模型注意力机制的基本计算单位如果你觉得大模型太贵、跑得太慢,很多时候不是因为模型太差,而是你“没搞明白 Token”。它不只是一个“计费单位”,而是你和 AI 沟通的语言粒度。原创 2025-04-16 11:20:08 · 659 阅读 · 0 评论 -
如何理解AI-First产品设计模式
"AI-First" 是过去几年科技圈的高频概念,尤其在大模型时代重新被提起,代表着一种从AI能力出发设计产品、组织与商业模式的范式变革。原创 2025-04-08 22:51:03 · 557 阅读 · 0 评论 -
定制化自己的 RAG 框架:结合 LlamaIndex 与自定义优化
本篇文章将介绍如何定制自己的 RAG 框架,并重点探讨 LlamaIndex 在索引管理与句子窗口解析方面的优化,以及如何整合 RAG 框架的优点到自己的项目中原创 2025-04-02 22:37:29 · 690 阅读 · 0 评论 -
不同向量数据库(FAISS / Pinecone / Weaviate)在 RAG 中的优缺点
FAISS、Pinecone 和 Weaviate 是当前主流的向量数据库,它们各有优缺点,适用于不同的应用场景。原创 2025-04-02 22:06:24 · 1089 阅读 · 0 评论 -
RAG 在 AI 助手、法律分析、医学 NLP 领域的实战案例
RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合信息检索和生成模型的技术,广泛应用于 AI 助手、法律分析、医学 NLP 等领域原创 2025-04-02 22:03:08 · 1229 阅读 · 0 评论 -
Function Calling 和 ReAct 让 AI 大模型更加智能
Function Calling 和 ReAct 让 LLM。原创 2025-04-03 11:41:43 · 975 阅读 · 0 评论 -
DeepSeek对比ChatGPT有何改进,可以用更低成本计算
下面是基于DeepSeek公开论文和代码,与ChatGPT对比后总结的改进点,以及其为何能用更少算力训练大模型的解析。原创 2025-04-07 09:53:23 · 752 阅读 · 0 评论 -
大模型开发的不同范式:应用、微调和专有模型
层级范式门槛可控性成本适合人群1应用开发(API + Prompt)低低低初创、个人开发者2微调开发(SFT、LoRA)中中中专业团队3专有模型开发高高高科研机构、大厂。原创 2025-04-07 12:21:10 · 702 阅读 · 0 评论 -
AI创业机会:寻找技术可实现但认知未普及领域
信息差(Information Asymmetry)确实是商业竞争中的核心变量,尤其在技术变革期会催生结构性机会。原创 2025-04-03 14:43:07 · 625 阅读 · 0 评论 -
OpenAI Function Calling 函数调用能力与外部交互
如果您遇到标记限制,我们建议限制函数数量或您为函数参数提供的描述的长度。为 OpenAI 模型提供了一种强大而灵活的方式与您的代码或外部服务进行交互。定义的,所以您可以利用它的许多丰富的功能,如属性类型、枚举、描述、嵌套对象和递归对象。流式传输可用于显示进度,通过显示在模型填充其参数时调用哪个函数,甚至实时显示参数。函数由其架构定义,架构告知模型其功能以及其所需的输入参数。然后,您将执行函数代码,发回结果,模型会将它们合并到最终响应中。但是,您不是将各块聚合成单个字符串,而是将各块聚合成编码的。原创 2025-04-03 15:20:08 · 861 阅读 · 0 评论 -
为什么相同prompt,Transformer 返回结果不一样
Transformer 本质是生成“概率分布”,不是选唯一答案使用了不同的采样策略语言本身就有丰富的“多样性”和上下文理解偏差ChatGPT 等模型为了提高“互动性”、“创造性”,故意引入了“不确定性”原创 2025-04-06 23:58:44 · 414 阅读 · 0 评论 -
ChatGPT不是AI,而是数学?真相远比你想的复杂
ChatGPT不是AI,而是数学?”这个说法有点片面,也有其道理。它强调的是:AI的底层是人类智慧的结晶,是科学与工程的成果。但别忘了,飞机也是一堆金属、螺丝和电路,但它能带你飞越万里。ChatGPT也是一堆矩阵和公式,但它能用语言连接你我。这背后的逻辑和美感,远比“它只是统计”来得深刻。原创 2025-04-07 09:43:32 · 472 阅读 · 0 评论 -
使用 LangChain4j 构建本地 RAG 系统
最新的 chatGPT-4o 只能基于 2023 年 6 月之前的数据进行回答,距离目前已经快一年的时间,如果想让 GPT 基于近一年的时间回复问题,就需要 RAG(检索增强生成)技术了。原创 2025-04-07 12:14:59 · 991 阅读 · 0 评论 -
大模型ReAct:思考与工具协同完成复杂任务推理
ReAct框架可以让现有应用得到一次智能化的进化的机会。以前需要人工编排服务调用链路会成为历史。原创 2025-04-03 11:46:19 · 1072 阅读 · 0 评论 -
Transformer原理及知识体系大纲
Transformer原理以及通过案例讲解,包括 1. Transformer架构通过输入文本,预测下一个字的概率,实现自然语言处理任务。原创 2025-04-06 23:54:07 · 553 阅读 · 0 评论 -
AI大模型下传统 Spring Java工程开发的演进和变化方向
传统的Spring Java工程正经历从“业务逻辑+数据库”向“业务逻辑+AI推理+数据智能”的演进。原创 2025-03-31 09:54:40 · 515 阅读 · 0 评论 -
Stanford CS230 Deep Learning 课程内容
斯坦福大学 CS230 课程是 Andrew Ng 主讲的深度学习课程,专注于神经网络、优化技术及其在计算机视觉、自然语言处理等领域的应用。原创 2025-03-31 09:27:44 · 459 阅读 · 0 评论 -
AI Agent 人工智能相关公开比赛汇总
参与 AI 相关比赛是提升技术能力、接触前沿算法、积累项目经验的绝佳方式。以下是全球知名的比赛,以及适合不同水平选手的竞赛分类。NeurIPS/CVPR/ICML 竞赛、Facebook FAIR、NASA Space Apps。Kaggle 初级比赛、Google Kick Start、AI4Good Hackathon。Devpost Hackathons、Tianchi 天池、Baidu AI 竞赛。ACM-ICPC、Google Code Jam、Kaggle 竞赛。你对哪些比赛最感兴趣?原创 2025-03-30 20:59:09 · 1188 阅读 · 0 评论 -
机器学习与AI大模型必备数学知识
机器学习与AI大模型必备数学知识原创 2025-03-30 23:34:53 · 772 阅读 · 0 评论 -
人工智能、机器学习经典计算机课程
以下是人工智能(AI)、机器学习(ML)和 AI 大模型相关的经典计算机课程,从入门编程、数学基础到深度学习、强化学习、自然语言处理(NLP)及 AI 领域实践等,适合不同阶段的学习者原创 2025-03-31 09:36:55 · 948 阅读 · 0 评论 -
BabyAGI 快速上手应用
BabyAGI 是一个轻量级、自我迭代的任务管理 AI Agent,基于 OpenAI API 和 Pinecone 向量数据库构建。原创 2025-03-31 14:22:05 · 233 阅读 · 0 评论 -
使用 Spring AI 和 LangChain4j 实现聊天机器人对比分析
使用 Spring AI 和 LangChain4j 实现聊天机器人对比分析原创 2025-03-31 10:00:59 · 1529 阅读 · 0 评论 -
使用FastAPI-MCP,让 FastAPI 应用秒变 MCP 服务器
FastAPI-MCP 是一款零配置工具,可让 FastAPI 应用自动暴露所有端点,并兼容 Model Context Protocol (MCP)。原创 2025-03-30 17:49:40 · 904 阅读 · 0 评论 -
什么是向量数据库
嵌入模型会将各种数据 (例如文本、图像、图表和视频) 转换为数值向量,以便捕捉其在多维向量空间中的含义和细微差别。嵌入技术的选择取决于应用需求,同时要兼顾语义深度、计算效率、要编码的数据的类型、维度等因素。baeldung通过将向量映射到多维空间,可以对向量的语义相似性进行细致的分析,从而显著提高搜索和数据分类的准确性。在使用AI 聊天机器人大语言模型 (LLM)检索增强生成 (RAG)和向量数据库的 AI 应用中以及在搜索引擎和许多其他用例中,嵌入模型发挥着至关重要的作用。原创 2025-03-30 16:13:45 · 192 阅读 · 0 评论 -
解读 LangChain 及其应用
LangChain 是一个开源框架,用于构建基于大型语言模型(LLM)的应用程序。原创 2025-03-30 16:43:29 · 320 阅读 · 0 评论 -
AI大模型、机器学习以及AI Agent开源社区和博客
• 内容: Transformers库、开源模型(如BERT、T5)、社区贡献的预训练模型和数据集。• 内容: GPT系列模型文档、研究论文、API使用指南(如GPT-4、ChatGPT)。• 内容: LLaMA系列大模型、多模态研究(如ImageBind)。• 内容: 多模态模型(如MUM、CLIP)、视觉-语言对齐技术。• 内容: 大模型技术细节(如Transformer、BERT)。• 内容: 多模态大模型(如CM3)、AI Agent研究。• 内容: 多模态模型、大模型优化技术(如稀疏注意力)。原创 2025-03-29 23:30:11 · 1065 阅读 · 0 评论 -
Stanford CS224N 公开课解读
Stanford CS224N 公开课解读:自然语言处理的前沿技术原创 2025-03-30 15:07:30 · 496 阅读 · 0 评论 -
FastAPI 在 AI 大模型开发中的应用
FastAPI 介绍、原理及其在 AI 大模型开发中的应用原创 2025-03-30 17:42:12 · 347 阅读 · 0 评论 -
AI Agent 中的 MCP 模型上下文协议详解
MCP(Model Context Protocol,模型上下文协议)是一种专门用于 AI Agent 之间共享上下文信息的通信协议。原创 2025-03-30 15:57:13 · 526 阅读 · 0 评论 -
向量数据库介绍及应用
向量数据库介绍及应用原创 2025-03-30 16:13:12 · 320 阅读 · 0 评论 -
LangChain 应用解析
以上示例展示了如何使用 LangChain 快速封装 OpenAI API,并实现一个简单的问答应用。:支持 OpenAI、Anthropic、Hugging Face 等主流大模型。:允许将多个 LLM 调用、数据处理步骤串联。:集成搜索引擎、API 访问、代码执行等功能。:提供短期/长期记忆机制,优化对话状态管理。:能够自主决策调用不同工具完成任务。原创 2025-03-30 16:39:16 · 126 阅读 · 0 评论 -
20篇AI大模型与Agent开发必读论文
证明模型参数与训练数据的均衡缩放法则(70B参数+1.4T tokens最优)。:提出推理(Reasoning)与行动(Action)协同的Agent架构。:学习数据缩放定律(Scaling Laws)与Prompt工程基础。:验证大规模预训练模型(175B参数)的上下文学习能力。:学习具身智能(Embodied AI)的实现路径。:在《我的世界》中实现终身学习的自主探索Agent。:提出混合专家模型(MoE)实现万亿参数级别扩展。:基于人类反馈的强化学习(RLHF)实现模型对齐。原创 2025-03-28 18:21:34 · 501 阅读 · 0 评论 -
实现 Transformer:从原理到代码实现
本文介绍了 Transformer 的基本原理,并基于 PyTorch 实现了完整的 Transformer 结构,包括编码器、解码器和多头注意力机制。Transformer 作为当前 NLP 领域的核心技术,在机器翻译、文本摘要、对话生成等任务中广泛应用,理解其实现有助于深入掌握深度学习的前沿技术。原创 2025-03-29 22:14:11 · 393 阅读 · 0 评论 -
从ChatGPT到AutoGPT——AI Agent的范式迁移
AutoGPT 代表了 AI Agent 的最新发展趋势,极大地提升了 AI 在自主任务执行方面的能力。然而,技术成熟度、伦理问题和商业化落地仍然是当前需要解决的关键挑战。未来,随着 AutoGPT 和其他 AI Agent 的不断演进,我们有望见证 AI 在生产力提升和企业运营中的更大突破。原创 2025-03-29 22:22:06 · 602 阅读 · 0 评论