最优策略(Optimal Policy)及贝尔曼最优方程(Bellman Optimally Equation)


1、最优策略(Optimal Policy)

强化学习的目标通常是找到一个策略使得它从初始状态出发能获得最多的期望回报。

首先定义策略之间的偏序关系: π > π ′ {\pi} > {\pi}' π>π,当且仅当对于任意状态 s 都有 V π ( s ) ⩾ V π ′ ( s ) V^{\pi}(s)\geqslant V^{\pi'}(s) Vπ(s)Vπ(s)

在有限状态和动作集合的MDP中,至少存在一个策略比其他策略都好或者一样好,这个策略就是最优策略,将最优策略定义为: π ∗ ( s ) \pi^*(s) π(s)

最优策略的状态价值函数称为:最优状态价值函数
在这里插入图片描述
同理,最优动作价值函数:
在这里插入图片描述
为了使得 Q ∗ ( s , a ) Q^*(s,a) Q(s,a)最大,需要在当前的 (s,a) 之后都执行最优策略,于是两者之间的关系:
在这里插入图片描述

2、贝尔曼最优方程(Bellman Optimally Equation)

在这里插入图片描述

3、参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值