最优策略(Optimal Policy)及贝尔曼最优方程(Bellman Optimally Equation)


1、最优策略(Optimal Policy)

强化学习的目标通常是找到一个策略使得它从初始状态出发能获得最多的期望回报。

首先定义策略之间的偏序关系: π > π ′ {\pi} > {\pi}' π>π,当且仅当对于任意状态 s 都有 V π ( s ) ⩾ V π ′ ( s ) V^{\pi}(s)\geqslant V^{\pi'}(s) Vπ(s)Vπ(s)

在有限状态和动作集合的MDP中,至少存在一个策略比其他策略都好或者一样好,这个策略就是最优策略,将最优策略定义为: π ∗ ( s ) \pi^*(s) π(s)

最优策略的状态价值函数称为:最优状态价值函数
在这里插入图片描述
同理,最优动作价值函数:
在这里插入图片描述
为了使得 Q ∗ ( s , a ) Q^*(s,a) Q(s,a)最大,需要在当前的 (s,a) 之后都执行最优策略,于是两者之间的关系:
在这里插入图片描述

2、贝尔曼最优方程(Bellman Optimally Equation)

在这里插入图片描述

3、参考文献

最优Optimal,OPT)算法通常指的是在给定条件下找到最佳解决方案的策略或方法,它通常与动态规划(Dynamic Programming, DP)相关,因为动态规划常常用于解决这类问题。动态规划通过分解大问题为小问题并保存子问题的解来达到优化目的。 一个经典的动态规划问题如背包问题[^4],其最优解算法可以描述如下: 1. **定义状态**: 通常定义一个二维数组 `dp[i][j]`,表示前 `i` 个物品,容量为 `j` 的背包能获得的最大价值。 2. **初始化**: 对于每个物品 `i` 和容量 `0`,`dp[i]` 初始值为 0,因为不携带任何物品的价值为 0。 3. **填充状态**: 从第一个物品开始,对于每个物品,考虑两种选择:不放入背包(`dp[i-1][j]`)或放入背包(`value[i] + dp[i-1][j-weight[i]]`),取其中价值更大的作为当前状态的值。 4. **计算最优解**: 最终的最优解在 `dp[n][W]`,其中 `n` 是物品数量,`W` 是背包容量。 **Python 示例** (假设有一个物品价值和重量列表 `values` 和 `weights`): ```python def knapsack_optimal(values, weights, capacity): dp = [ * (capacity + 1) for _ in range(len(values) + 1)] for i in range(1, len(values) + 1): for w in range(1, capacity + 1): if weights[i - 1] <= w: dp[i][w] = max(values[i - 1] + dp[i - 1][w - weights[i - 1]], dp[i - 1][w] return dp[-1][-1] # 使用示例 values = [60, 100, 120] weights = [10, 20, 30] capacity = 50 optimal_value = knapsack_optimal(values, weights, capacity) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值