给定一个插入序列就可以唯一确定一棵二叉搜索树。然而,一棵给定的二叉搜索树却可以由多种不同的插入序列得到。例如分别按照序列{2, 1, 3}和{2, 3, 1}插入初始为空的二叉搜索树,都得到一样的结果。于是对于输入的各种插入序列,你需要判断它们是否能生成一样的二叉搜索树。
输入格式:
输入包含若干组测试数据。每组数据的第1行给出两个正整数N (≤10)和L,分别是每个序列插入元素的个数和需要检查的序列个数。第2行给出N个以空格分隔的正整数,作为初始插入序列。最后L行,每行给出N个插入的元素,属于L个需要检查的序列。
简单起见,我们保证每个插入序列都是1到N的一个排列。当读到N为0时,标志输入结束,这组数据不要处理。
输出格式:
对每一组需要检查的序列,如果其生成的二叉搜索树跟对应的初始序列生成的一样,输出“Yes”,否则输出“No”。
输入样例:
4 2
3 1 4 2
3 4 1 2
3 2 4 1
2 1
2 1
1 2
0
输出样例:
Yes
No
No
思路:首先根据输入的第一个序列建立一个二叉搜索树,再判断输入的L个序列是否能构成与其相同的二叉搜索树
如何判断是否是同一棵二叉搜索树:
1. 首先在建立结构体时增加一个flag变量判断是否走过这个结点,因此在建立树时要将其置为0
2. 接下来每输入一个序列都要使用judge判断是否能够成一个相同的二叉树
- 如果当前走到的结点相等就将原二叉搜索树该结点的flag置为1,如果遇到一个flag为0的结点就判断与其是否相等,如果相等就将flag置为1,如果不相等那么肯定不是一个二叉搜索树,因为相同的二叉搜索树结点出现的顺序都是相同的
- 同时要注意,每判断完一个二叉搜索树时要将原树的flag都重新置为0,并且每处理完一个样例都要将原树free掉,避免影响下一组样例
#include <iostream>
#include <cstdlib>
using namespace std;
typedef struct TreeNode *Tree;
struct TreeNode
{
int v;/*当前节点的值*/
Tree Left,Right;/*左儿子,右儿子*/
int flag;/*判断是否走过*/
};
Tree MakeTree(int N);/*建立一棵新的二叉树*/
Tree MakeNode(int V);/*建立一个新结点*/
Tree Insert(Tree T,int V);/*插入新结点*/
int check(Tree T,int V);/*检查是否经过一个没有被标记的结点如果相等返回1,否则返回0*/
int judge(Tree T,int N);/*判断输入序列是否和Tree是同一棵二叉搜索树*/
void Reset(Tree T);/*将树上的标记重置*/
void FreeTree(Tree T);/*清空树*/
int main()
判断二叉搜索树一致性

最低0.47元/天 解锁文章
4152

被折叠的 条评论
为什么被折叠?



