题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=5234
题意:给出一个n*m的矩阵和一个整数k,要求从左上角开始只能往右
或者往左开始遍历,在途中可以选择加当前位置的数或者不加当前位
置的数,求最终加的数的和小于k的最大值。
分析:这道题一看就是一般的背包,但是没研究过背包和dp,只是凭
这感觉写了状态转移方程,wa了几次A了,感觉dp是个很好的东西,只
是自己图论还没学好就从来没弄过这个,其实还是可以学学的。
首先先说一下背包九讲里面的第一个内容吧,原文是这样的:
有N件物品和一个容量为V的背包。第i件物品的体积是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。
状态转移方程:
f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的
伪码:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c[i]]+w[i]};
如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,
价值为f[i-1][v];
如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,
此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。
②例题二:
采药
Time Limit: 1000MS Memory Limit: 65535KB
Submissions: 155 Accepted: 50
Description辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?
Input输入的第一行有两个整数T(1 <= T <= 1000)和M(1 <= M <= 100),用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。接下来的M行每行包括两个在1到100之间(包括1和100)的整数,分别表示采摘某株草药的时间和这株草药的价值。
Output输出包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。
Sample Input
70 3
71 100
69 1
1 2
Sample Output
3
#include<iostream>
# include<cstring>
# define max(a,b) a>b?a:b
using namespace std;
int main()
{
int dp[101][1001],m,T,w[101],val[101],i,j;
cin>>T>>m;
for(i=1;i<=m;i++)
cin>>w[i]>>val[i];
memset(dp,0,sizeof(dp));
for(i=1;i<=m;i++)
for(j=0;j<=T;j++)//j相当于上面说的V-c[i]
{
if(j>=w[i])
dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+val[i]);//放还是不放的选择
else dp[i][j]=dp[i-1][j];
}
cout<<dp[m][T]<<endl;
return 0;
}
#include<string.h>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn=100+10;
int map[maxn][maxn],dp[maxn][maxn][maxn];
int Max(int x,int y)
{
return x>y?x:y;
}
int main()
{
int n,m,k;
int l1,l2,l3,l4;
while(~scanf("%d%d%d",&n,&m,&k))
{
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&map[i][j]);
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int l=0;l<=k;l++)
{
l1=l2=l3=l4=0;
l1=dp[i-1][j][l];
l2=dp[i][j-1][l];
if(l>=map[i][j])
{
l3=dp[i-1][j][l-map[i][j]]+map[i][j];
l4=dp[i][j-1][l-map[i][j]]+map[i][j];
dp[i][j][l]=Max(Max(l1,l2),Max(l3,l4));
}
else
dp[i][j][l]=Max(l1,l2);
}
printf("%d\n",dp[n][m][k]);
}
return 0;
}