木盏

You only live once.

WDSR(NTIRE2018超分辨率冠军)【深度解析】

s超分辨率(super-resolution)的通俗解释就是:将低分辨率的图像通过算法转换成高分辨率图像。听起来似乎很神奇,这样是不是可以把低清电影转换成高清了?就现在来看,基于深度学习的超分辨率(简称SR)已经达到了amazing的效果。 当然,以木盏的习惯就是,只在博文中讨论干货。 这篇博...

2018-12-17 17:29:27

阅读数 2584

评论数 20

CVPR2019实时数据跟进【持续更新】

不知不觉,CVPR2019都已经截稿了。CVPR作为泛人工智能领域H指数最高的会议(高达158),被广泛关注。尤其对于CVer来说,这是一个神圣的会议。CVPR2018论文数据统计可以点这里。 CVPR2019会议信息如下: 截稿日期 举办地点 举办时间 链接 11月17...

2018-11-19 17:02:12

阅读数 4815

评论数 0

YOLO系列之YOLO-Lite:实时运行在CPU上的目标检测算法

实时目标检测一直是yolo系列的追求之一,从yolo v1开始,作者就在论文中强调real-time。在后期的v2和v3的发展过程中,慢慢在P&R(尤其是recall rate)上下不少功夫。同时,计算量的增大也牺牲了yolo的实时性。 tiny-yolo是轻量级的yol...

2018-11-19 15:35:53

阅读数 2045

评论数 2

AugGAN:基于GAN的图像数据增强

数据增强方法无疑是需要重点研究的基本任务之一,因为我们的主流深度学习算法还是一个有监督过程。台湾国立清华大学在ECCV2018发表了一篇AugGAN开始把GAN用在数据增强方面了,当然,这并不是这个领域的第一篇。不过很具有参考意义,也很能解决实际问题。所以特地写一个blog研究一番。 读本文需要...

2018-11-01 16:45:06

阅读数 1122

评论数 2

【AI数学】Group Normalization(何恺明ECCV2018最佳论文提名)

声明:原创文章,欢迎转载,但必须经过本人同意。 论文标题:《Group Normalization》 论文链接: https://arxiv.org/pdf/1803.08494.pdf 作为两年一届的计算机视觉顶会ECCV前不久在德国召开,引起了诸多CVer的关注。其中,最佳论文被一个3D...

2018-10-20 14:25:08

阅读数 729

评论数 2

yolo系列之yolo v3【深度解析】

yolo_v3是我最近一段时间主攻的算法,写下博客,以作分享交流。 看过yolov3论文的应该都知道,这篇论文写得很随意,很多亮点都被作者都是草草描述。很多骚年入手yolo算法都是从v3才开始,这是不可能掌握yolo精髓的,因为v3很多东西是保留v2甚至v1的东西,而且v3的论文写得很随心。想...

2018-09-12 16:24:48

阅读数 32798

评论数 366

ECCV 2018所有论文合集

http://openaccess.thecvf.com/ECCV2018.py    一个链接解决各位需求。 best paper(1篇):  标题  Implicit 3D Orientation Learning for 6D Object Detection from RGB I...

2018-09-05 16:23:49

阅读数 1206

评论数 0

【CVPR2018】论文整理(收藏这一篇就够了)

CVPR作为CV界最受关注的三大顶会之一,每一个CVer都应该好好关注论文。CVPR2018在今年6月18日-22日在美国盐湖城举行。 先介绍一下CVPR2018的一些数据: 今年一共收到3303篇文章,其中979篇被录用。投录比约为29.6%。 收录论文按专家评分,分为三个层次...

2018-06-23 14:23:46

阅读数 22254

评论数 64

python+opencv三点仿射变换

一张图来表明要实现的功能: 说明:将一张正正方方的矩形图转换成平行四边形(甚至不规则四边形)的操作。 平行四边形的图形看起来具有3D视角,在很多方面都有应用。我们直接来实现这个操作: 1. 实现 我们只需对应出3个点就可以使用opencv封装好的函数进行这个操作了,哪三个点呢?左上、右...

2019-02-26 15:56:27

阅读数 87

评论数 0

Linux实用技巧之screen(离线使用服务器训练模型的神器)

用服务器训练模型的时候,经常因为本地断网而导致模型训练终止。而sreen可以解决这个痛楚。screen是Linux系统下的远程会话工具,也就是可以离线会话。 先安装screen,需要root权限: sudo apt-get install screen 我们可以通过在终端里输入screen...

2019-02-26 10:31:05

阅读数 108

评论数 0

Keras中的fit和fit_generator

Keras是超级无敌好入手的AI框架之一了,极其人性化的设计受到了本人的吹爆。然而,keras中比较难理解的地方还是存在的,比如说这个fit_generator。 在模型搭建完compile以后,一行"model.fit_generator(xxx)"就可以完...

2019-02-25 11:09:50

阅读数 84

评论数 2

keras保存模型中的save()和save_weights()

今天做了一个关于keras保存模型的实验,希望有助于大家了解keras保存模型的区别。 我们知道keras的模型一般保存为后缀名为h5的文件,比如final_model.h5。同样是h5文件用save()和save_weight()保存效果是不一样的。 我们用宇宙最通用的数据集MNIST来做这...

2019-01-23 16:38:23

阅读数 329

评论数 3

python中的tqdm模块用法

tqdm是python中很常用的模块,它的作用就是在终端上出现一个进度条,使得代码进度可视化。 直接可以通过pip安装, pip install tqdm 要使用tqdm也是非常方便,大致有2中方法: 1,tqdm子模块 from tqdm import tqdm for i in t...

2019-01-21 13:58:39

阅读数 106

评论数 0

基于python+opencv的DCT(离散余弦变换)实验

离散余弦变换是图像处理中非常常用的算法,可以用于jpg图像压缩等领域。数学原理我就不扯了,网上一大堆。但介于网上实在没有关于python+opencv来实现DCT的好文章(至少木盏没有搜到过)。于是稍微写一个博文做一个总结,给后人便利。 要用到的模块是opencv,安装方法看另一篇文章《open...

2019-01-16 18:40:11

阅读数 162

评论数 0

python读取pdf中的文本

python处理pdf也是常用的技术了,对于python3来说,pdfminer3k是一个非常好的工具。 pip install pdfminer3k 首先,为了满足大部分人的需求,我先给一个通用一点的脚本来读取pdf中的文本: from io import StringIO from...

2019-01-13 23:31:28

阅读数 1114

评论数 0

Keras框架下输出模型中间结果

Keras因其简洁便用被越来越多的调参工程师接受了,它具有高可读性的优势,缘于它本身对代码的模块化封装。高度模块化封装之后,很多细粒度操作就变得比较困难了,要不停地阅读它的技术document。   &a...

2019-01-11 18:41:10

阅读数 179

评论数 0

Sub-pixel Convolution(子像素卷积)

Sub-pixel convolution是一种巧妙的图像及特征图upscale的方法,又叫做pixel shuffle(像素洗牌)。我们知道,用深度学习处理图像的话,经常需要对特征图放大。常见的方法有直接上采样,双线性插值,反卷积等等。本文主要介绍一种在超分辨率中经常使用的upscale方法——...

2018-12-12 16:49:55

阅读数 845

评论数 0

非root用户安装或升级CUDA和CUDNN版本

很多框架的版本都受限于CUDA和CUDNN的版本,而如果没有服务器的root权限的话,这将很不方便。 非root用户也是可以修改CUDA和CUDNN版本的。亲测有效。 方法来自: https://blog.csdn.net/sinat_20280061/article/details/804...

2018-12-06 14:53:04

阅读数 416

评论数 0

linux下使用python脚本查看CUDA和CUDNN版本

先说说用shell命令查看CUDA和CUDNN版本的方法: 查看CUDA版本的命令如下: cat /usr/local/cuda/version.txt 查看CUDNN版本: cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR ...

2018-12-06 12:33:39

阅读数 283

评论数 0

SSIM(结构相似性)-数学公式及python实现

SSIM是一种衡量两幅图片相似度的指标。 出处来自于2004年的一篇TIP,标题为:Image Quality Assessment: From Error Visibility to Structural Similarity 地址为:https://ieeexplore.ieee.org/st...

2018-12-01 17:50:45

阅读数 1827

评论数 7

提示
确定要删除当前文章?
取消 删除