随着高性能计算应用需求不断增长,构建一套适合本地环境的 C++ 与 Python 混合编程框架,并兼容 CUDA 并行计算能力,命名为 CUDA-PyCPP-Kit。本项目旨一套入门级代码框架。
《CUDA-PyCPP-Kit》是一套高性能计算入门框架,专注于 Python 与 C++/CUDA 混合编程实践。该项目具备模块化架构,分为 CPU 与 GPU 两条路径,既能在无独立显卡环境下执行,也能部署于支持 CUDA 的 NVIDIA 平台。文中深入分析了模块设计、核心算子实现、性能基准测试与工程配置细节,并以专业视角梳理从 C++ 算子构建到 Python 调用的全流程。适合具备一定 C++ / Python 基础的开发者进行学习、调试与拓展。
一、项目背景与初衷
从多年的工程经验来看,Python 虽然在数据处理、科学计算方面有着较高的效率,但在真正需要性能的场景(如大规模矩阵运算、嵌入式算法部署、GPU 并行)时,Python 本身的性能瓶颈就非常明显。而通过 C++、CUDA、OpenMP 等技术可以极大提高运算效率,但对初学者不够友好。为此,我设计了这个项目,从 Hello World 到矩阵乘法、基准测试等逐步展开,帮助用户理解底层计算框架。
二、架构设计
整个项目采用模块化架构设计,主要由以下部分组成:
-
C++模块:实现 CPU 上的矩阵乘法、归约等算法,文件包括
main.cpp
、matrix_mul.cpp
。 -
CUDA模块:使用
.cu
文件实现 GPU 加速功能,包含starter_kit.cu
。 -
Pybind11接口层:使用
setupCPU.py
、setupGPU.py
将 C++/CUDA 编译为 Python 模块,供高层调用。 -
Python 测试与基准脚本:包含
testCPU.py
、bench.py
等,用于验证模块功能及进行性能比较。 -
依赖配置:通过
requirements-cpu.txt
、requirements-gpu.txt
明确开发环境依赖,适配本地部署与远程服务器。
三、Python 与 C++/CUDA 混合编程实战
1. CPU 示例:矩阵乘法
以 matrix_mul.cpp
为例,我们实现了一个标准的三重循环矩阵乘法,通过 pybind11
封装后,可以通过 Python 调用:
py::array_t<float> matmul(const py::array_t<float>& a, const py::array_t<float>& b) {
// 输入检查及维度匹配省略
for (ssize_t i = 0; i < M; ++i)
for (ssize_t j = 0; j < N; ++j) {
float sum = 0.0f;
for (ssize_t k = 0; k < K; ++k)
sum += ptr_a[i * K + k] * ptr_b[k * N + j];
buf_r(i, j) = sum;
}
return result;
}
这一部分支持在 Mac、Linux 等本地环境进行编译与测试,适用于 CPU 单核、多核性能测试。
2. CUDA 示例:GPU 并行加速
针对有 CUDA 开发环境的用户,我编写了 starter_kit.cu
文件,实现了 kernel 级别的矩阵乘法,并通过 Python 脚本进行调用验证:
python -c "import gpu_extension; print(gpu_extension.matmul)"
此部分建议在具备 NVIDIA 显卡和驱动的 Linux 环境下测试(如 RTX 30 系列或 A100 服务器),并可用于性能比较。
3. 混合构建脚本说明
-
setupCPU.py
:用于构建 C++ 模块,无需 CUDA 环境。 -
setupGPU.py
:用于构建含有.cu
的 CUDA 模块,需安装nvcc
、NVIDIA 驱动。
编译命令统一使用:
python setupCPU.py build_ext --inplace
成功后会生成 .so
模块供 Python 导入使用。
四、性能评估与测试方法
为了便于用户直观理解 CUDA 与 CPU 的性能差异,我设计了统一的 benchmark 测试脚本,如下:
def benchmark_matmul(size):
A = np.random.rand(size, size).astype(np.float32)
B = np.random.rand(size, size).astype(np.float32)
t0 = time.time()
C_cpu = cpu_extension.matmul(A, B)
t1 = time.time()
C_gpu = gpu_extension.matmul(A, B)
t2 = time.time()
print(f"CPU: {t1 - t0:.4f}s, GPU: {t2 - t1:.4f}s")
在本地 M1/M2 MacBook 上可以进行 CPU 模拟测试;若需要 GPU 测试,则可选择部署在阿里云、腾讯云、百度智能云等平台。
五、开发环境推荐
针对中国开发者,我推荐以下本地与云端测试平台:
-
本地:推荐 Mac + pybind11 模拟环境,无需 CUDA 即可运行。
-
远程:推荐使用阿里云 GN5/A100、百度 AI Studio、华为云 ModelArts、腾讯云 GN 系列,便于远程调试 CUDA 程序。
六、常见问题与解决思路
-
PyBind11 报错:请确认 Python 环境版本、C++ 编译器一致。
-
GPU 调用失败:检查 CUDA 驱动与设备支持(通过
nvidia-smi
确认)。 -
运行效率低:建议测试矩阵维度 1024x1024 以上,或使用 profiler 工具分析 kernel 性能瓶颈。
七、后续计划
本项目作为一个混合编程的入门框架,已初步实现了 C++ 与 Python 的协同工作,也为进一步开发 CUDA 高性能算法奠定基础。未来我计划:
-
增加更多算子模块(如卷积、池化、Softmax)
-
引入 OpenMP 并行优化结构
-
加强对 CuPy、PyCUDA 等模块的集成封装
-
与主流深度学习训练流程对接
目前该项目已托管至 GitCode
我是一位独立开发者,加入使用者社群,一起讨论私有化 LLM 与 RAG 架构实践,欢迎 Star、Fork、Issue 交流。