推导
子空间到父空间转换矩阵
假设有两个坐标系P和C,其中C为P的子坐标系.
定义一个坐标系需要原点和轴向量:
假定C的(在P坐标系中)
坐标原点: O c O_c Oc
基向量: X c , Y c , Z c X_c,Y_c,Z_c Xc,Yc,Zc
给定一个子空间C中的一点 A c = ( a , b , c ) A_c=(a,b,c) Ac=(a,b,c)
我们知道一个坐标的值为原点加上各坐标值乘以对应基向量.
可以如下表示:
( x , y , z ) = O + a X + b Y + c Z (x,y,z) = O+aX+bY+cZ (x,y,z)=O+aX+bY+cZ
那么A点在P的坐标:
A p = O c + a X c + b Y c + c Z c A_p = O_c+aX_c+bY_c+cZ_c Ap=Oc+aXc+bYc+cZc
把基向量用坐标方式表示:
A p = ( x o c , y o c , z o c ) + a ( x x c , y x c , z x c ) + b ( x y c , y y c , z y c ) + c ( x z c , y z c , z z c ) \begin{aligned} A_p= (x_{o_c},y_{o_c},z_{o_c})+a(x_{x_c},y_{x_c},z_{x_c})+\\ b(x_{y_c},y_{y_c},z_{y_c})+c(x_{z_c},y_{z_c},z_{z_c})\\ \end{aligned} Ap=(xoc,yoc,zoc)+a(xxc,yxc,zxc)+b(xyc,yyc,zyc)+c(xzc,yzc,zzc)
用列向量来表示坐标并使用矩阵表示:
A p = ( x o c y o c z