
Python 高阶
文章平均质量分 72
带领你探索Python的高级语法,掌握编写高效代码的本领,巩固较难知识,让你有“质的飞跃”。
凭空起惊雷
座右铭:学如逆水行舟,不进则退。学无止境,立志于学问。
我是一名热衷于编程和学习的程序员。我拥有计算机科学学士学位,我对Java、Python、C++等
编程语言和开发技术都有深入的了解和实践经验。
注重青少年的成长发展,利用工作之余发布Scratch的优秀资源。
我擅长于设计和开发高效、可扩展的软件系统,并注重代码的质量和可维护性。
除了工作,我还是一个热爱学习的人,不断追求新的知识和技术。我相信,只有不断学习和提高自己的技能,才能够在这个快速发展的行业中保持竞争力。
我是一个热爱编程、注重细节的程序员,希望我能够在未来的职业生涯中不断发展和成长。
展开
-
高大上!五个python高级可视化图表!
本文分享5个“高大上”的python可视化图表及其python实现代码。原创 2024-05-22 21:47:17 · 2039 阅读 · 0 评论 -
揭秘 Python 江湖中的15个冷门但超能模块
大家好!你知道吗?Python这门语言里藏着许多不为人知的宝藏模块,它们可能不像Numpy和Pandas那样声名显赫,但实力绝对不容小觑。今天,我们就一起探索15个鲜为人知但功能强大的Python标准库,让它们在你的编程世界里闪闪发光!原创 2024-05-18 09:45:00 · 441 阅读 · 0 评论 -
Python数据分析中备受欢迎的库和工具
Pandas提供了高效的数据结构和数据操作工具,NumPy用于科学计算和数组操作,Matplotlib和Seaborn用于数据可视化,Scikit-learn支持机器学习算法和模型评估,Jupyter Notebook提供了交互式的数据分析环境。这些库和工具在数据处理、分析和可视化方面发挥着重要的作用,大大提高了数据分析人员的工作效率和结果展示的质量。Pandas的核心数据结构是DataFrame,类似于电子表格,可以处理结构化、标签化的数据,并提供了丰富的数据操作函数,如数据过滤、排序、合并和统计等。原创 2024-01-20 10:30:00 · 410 阅读 · 0 评论 -
使用Python、OpenCV和Pyzbar实时摄像头识别二维码!
在本文中,我们将使用Python编程语言和两个强大的库OpenCV和Pyzbar来实现实时摄像头识别二维码的功能。本文介绍了如何使用Python编程语言结合OpenCV和Pyzbar库来实时摄像头识别二维码。通过这种方法,您可以快速、高效地从摄像头捕获的图像中识别二维码,并进行相应的处理。二维码已经成为现代生活中不可或缺的一部分,它们可以在各种场景中使用,例如支付、广告、产品追踪等。在本文中,我们将使用Python编程语言和两个强大的库OpenCV和Pyzbar来实现实时摄像头识别二维码的功能。原创 2024-01-17 15:30:00 · 1189 阅读 · 0 评论 -
一个用于批量给图片增加水印的Python库
给图片、视频增加水印以确认版权或者增加效果,是在媒体内容信息经常需要用到的技术。本文推荐一个开源免费Python脚本,可以在指定目录及其子目录中批量给图像添加水印,当然,你也可以集成到你的Web应用中。本文推荐一个开源免费Python脚本,可以在指定目录及其子目录中批量给图像添加水印,当然,你也可以集成到你的Web应用中。源码地址:https://github.com/theitrain/watermark。除了以上位置,其他位置都将报错。原创 2024-01-14 15:30:00 · 479 阅读 · 0 评论 -
Python 实现微积分函数及运算
微积分(Calculus),数学概念,是高等数学中研究函数的微分(Differentiation)、积分(Integration)以及有关概念和应用的数学分支。它是数学的一个基础学科,内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分的基本概念和内容包括微分学和积分学。微分学的主要内容包括:极限理论、导数、微分等。原创 2023-12-19 11:45:00 · 1671 阅读 · 0 评论 -
Python 钉钉自动打卡脚本
这个脚本使用了requests库来发送HTTP请求,使用json库来处理JSON数据。脚本会每隔一小时自动发送一条打卡消息到钉钉群。原创 2023-12-17 14:00:00 · 4558 阅读 · 3 评论 -
开发者必备21个Python工具
在这篇文章中,我们将介绍21个开发者必备的Python工具,涵盖了开发、调试、测试、性能优化和部署等多个方面。Python作为一门流行的编程语言,拥有着庞大的生态系统和丰富的工具库,为开发者们提供了无限可能。在这篇文章中,我们将介绍21个开发者必备的Python工具,涵盖了开发、调试、测试、性能优化和部署等多个方面。原创 2023-12-03 15:45:00 · 1452 阅读 · 0 评论 -
Python 计数排序的代码实现
计数排序是一个非基于比较的排序算法,该算法于1954年由 Harold H. Seward 提出。它的优势在于在对一定范围内的整数排序时,它的复杂度为Ο(n+k)(其中k是整数的范围),快于任何比较排序算法。 当然这是一种牺牲空间换取时间的做法,而且当O(k)>O(n*log(n))的时候其效率反而不如基于比较的排序(基于比较的排序的时间复杂度在理论上的下限是O(n*log(n)), 如归并排序,堆排序)计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。原创 2023-05-04 18:55:06 · 463 阅读 · 0 评论 -
Python 堆排序的代码实现
堆排序(Heapsort),它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。堆排序是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。堆排序可以说是一种利用堆的概念来排序的选择排序。原创 2023-05-03 20:12:42 · 158 阅读 · 0 评论 -
Python 快速排序的代码实现
快速排序(Quicksort)是由东尼 · 霍尔所发展的一种排序算法,是对冒泡排序的一种改进。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。原创 2023-05-03 20:03:01 · 240 阅读 · 0 评论 -
Python 归并排序的代码实现
归并排序(Merge sort)是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。原创 2023-05-03 11:20:38 · 304 阅读 · 0 评论 -
Python 插入排序的代码实现
有一个已经有序的数据序列,要求在这个已经排好的数据序列中插入一个数,但要求插入后此数据序列仍然有序,这个时候就要用到一种新的排序方法 —— 插入排序法,插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。原创 2023-05-03 10:47:37 · 441 阅读 · 0 评论 -
Python 选择排序的代码实现
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。选择排序是不稳定的排序方法无论什么数据进去都是 O(n²) 的时间复杂度。所以用到它的时候,数据规模越小越好。原创 2023-05-03 09:52:15 · 423 阅读 · 0 评论 -
Python 冒泡排序的代码实现
冒泡排序(Bubble Sort)也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。 作为最简单的排序算法之一,冒泡排序给我的感觉就像 Abandon 在单词书里出现的感觉一样,每次都在第一页第一位,所以最熟悉。冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,原创 2023-05-03 09:31:21 · 228 阅读 · 0 评论 -
十大经典排序算法大全
排序算法是《数据结构与算法》中最基本的算法之一。原创 2023-05-03 09:03:36 · 91 阅读 · 0 评论 -
Python 桶排序的代码实现
桶排序 (Bucket sort)或所谓的箱排序,是一个排序算法,工作的原理是将数组分到有限数量的桶子里。每个桶子再个别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)。桶排序是鸽巢排序的一种归纳结果。当要被排序的数组内的数值是均匀分配的时候,桶排序使用线性时间(Θ(n))。但桶排序并不是 比较排序,他不受到 O(n log n) 下限的影响。中文名桶排序要求数据的长度必须完全一样公式数据结构设计链表可以采用很多种方式实现性质平均情况下桶排序以线性时间运行原理。原创 2023-05-03 08:55:19 · 212 阅读 · 0 评论 -
Python 基数排序的代码实现
基数排序(radix sort)属于"分配式排序"(distribution sort),又称"桶子法"(bucket sort)或bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些"桶"中,藉以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。原创 2023-05-03 07:53:24 · 210 阅读 · 0 评论 -
Python 高阶函数
高阶函数:一个函数可以作为参数传给另外一个函数,或者一个函数的返回值为另外一个函数(若返回值为该函数本身,则为递归),满足其一则为高阶函数。def bar():func()foo(bar)def bar():return barres()以上两个示例中,函数foo()为高阶函数,示例一中函数bar作为foo的参数传入,示例二中函数bar作为foo的返回值。注:函数名(例如bar 、foo)-->其为该函数的内存地址;函数名+括号(例如 bar()、foo() )-->调用该函数。原创 2023-05-02 22:34:36 · 118 阅读 · 0 评论 -
Python urllib
Python urllib 库用于操作网页 URL,并对网页的内容进行抓取处理。本文主要介绍 Python3 的 urllib。原创 2023-04-27 20:57:19 · 119 阅读 · 0 评论