Spark Streaming中window滑动窗口的应用

Spark Streaming中window滑动窗口应用,Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作。每次掉落在窗口内的RDD的数据,会被聚合起来执行计算操作,然后生成的RDD,会作为window DStream的一个RDD。

如官网图例中所示,就是对每三秒钟的数据执行一次滑动窗口计算,这3秒内的3个RDD会被聚合起来进行处理,然后过了两秒钟,又会对最近三秒内的数据执行滑动窗口计算。所以每个滑动窗口操作,都必须指定两个参数,窗口长度以及滑动间隔,而且这两个参数值都必须是batch间隔的整数倍。

Spark Streaming对滑动窗口的支持,是比Storm更加完善和强大的。

 

Spark Streaming对滑动窗口支持的转换操作:

案例:

热点搜索词滑动统计,每个10秒钟,统计最近60秒钟的搜索词的搜索频次,并打印出排名最靠前的3个搜索词以及出现次数。

scala版本:

package com.spark.streaming  
  
import org.apache.spark.streaming.Seconds  
import org.apache.spark.streaming.StreamingContext  
import org.apache.spark.SparkConf  
  
/** 
 * @author Ganymede 
 */  
object WindowHotWordS {  
  def main(args: Array[String]): Unit = {  
    val conf = new SparkConf().setAppName("WindowHotWordS").setMaster("local[2]")  
  
    //Scala中,创建的是StreamingContext  
    val ssc = new StreamingContext(conf, Seconds(5))  
  
    val searchLogsDStream = ssc.socketTextStream("spark1", 9999)  
  
    val searchWordsDStream = searchLogsDStream.map { searchLog => searchLog.split(" ")(1) }  
  
    val searchWordPairDStream = searchWordsDStream.map { searchWord => (searchWord, 1) }  
  
    // reduceByKeyAndWindow  
    // 第二个参数,是窗口长度,这是是60秒  
    // 第三个参数,是滑动间隔,这里是10秒  
    // 也就是说,每隔10秒钟,将最近60秒的数据,作为一个窗口,进行内部的RDD的聚合,然后统一对一个RDD进行后续计算  
    // 而是只是放在那里  
    // 然后,等待我们的滑动间隔到了以后,10秒到了,会将之前60秒的RDD,因为一个batch间隔是5秒,所以之前60秒,就有12个RDD,给聚合起来,然后统一执行reduceByKey操作  
    // 所以这里的reduceByKeyAndWindow,是针对每个窗口执行计算的,而不是针对 某个DStream中的RDD  
    // 每隔10秒钟,出来 之前60秒的收集到的单词的统计次数  

    val searchWordCountsDStream = searchWordPairDStream.reduceByKeyAndWindow((v1: Int, v2: Int) => v1 + v2, Seconds(60), Seconds(10))  
  
      
    val finalDStream = searchWordCountsDStream.transform(searchWordCountsRDD => {  
      val countSearchWordsRDD = searchWordCountsRDD.map(tuple => (tuple._2, tuple._1))  
      val sortedCountSearchWordsRDD = countSearchWordsRDD.sortByKey(false)  
      val sortedSearchWordCountsRDD = sortedCountSearchWordsRDD.map(tuple => (tuple._1, tuple._2))  
      val top3SearchWordCounts = sortedSearchWordCountsRDD.take(3)  
  
      for (tuple <- top3SearchWordCounts) {  
        println("result : " + tuple)  
      }  
  
      searchWordCountsRDD  
    })  
  
    finalDStream.print()  
  
    ssc.start()  
    ssc.awaitTermination()  
  }  
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值