sklearn库
文章平均质量分 67
乐在么么茶
机器学习 数据挖掘 计算机视觉
展开
-
多元线性回归
用到sklearn库中的linear_model模块:①Linear.Regression()类②Ridge()类 ①Linear.Regression():通过求实际观测值与预测值的差的平方的最小值求得参数w; 数学公式:(即最小二乘法) from sklearn import linear_model X=[[0,0],[1,2],[2,2],[4,5],[5,100]] y=[原创 2017-12-26 03:15:19 · 254 阅读 · 0 评论 -
KNN实战_改进约会网站的配对效果
这次用KNN算法实战了改进约会网站的配对效果,将代码和思路记录下来作为以后思考和改进的模版,其中③K-临近算法实现代码可以用sklearn中的KNeighborsClassifier()代替import numpy as npimport operatorfrom sklearn.neighbors import KNeighborsClassifier import matplotlib.pyp原创 2017-12-31 01:15:16 · 374 阅读 · 0 评论 -
SKlearn库——监督学习之分类(Classification)(1)
(1)广义线性模块: sklearn.linear_model (2)支持向量机模块:sklearn.svm (3)最临近模块:sklearn.neighbors (4)高斯过程模块:sklearn.gaussian_process (5)朴素贝叶斯模块:sklearn.naive_bayes (6)决策树模块:sklearn.tree (7)集成模块:sklearn.ensemble原创 2017-12-28 21:31:02 · 2476 阅读 · 0 评论 -
SKlearn库——(2)朴素贝叶斯分类
模块:sklearn.naive_bayes 理论基础:每队特征之间相互对立;其需要的训练数据比较少,通过计算属于每个类的概率并取概率最大的类作为预测类 共有三类:①高斯贝叶斯(from sklearn.naive_bayes import GaussianNB) ②多项式模型贝叶斯(from sklearn.naive_bayes import Mul原创 2018-01-08 23:45:12 · 781 阅读 · 0 评论 -
查准率和召回率判断模型好坏
查准率:预测为1的数据中,真的是1的比例。sklearn.metrics.precision_score()召回率:真的是1的数据中 ,被预测为1的比例 sklearn.metrix.recall_score()F1Score=2*PR/(P+R) 来判断模型的好坏;sklearn.metrix.f1score() 理想状态是预测是1的全部真的是1(即查准率=1)&真的是1的全部被预测是1...原创 2018-04-01 13:07:08 · 877 阅读 · 0 评论 -
过拟合,欠拟合与模型调整
①欠拟合即不能准确的拟合训练集数据;即训练集的损失函数高,得分低 欠拟合对交叉测试集(或其他新数据集)的预测能力也较差,即交叉测试集的损失函数高,得分低; 欠拟合属于高偏差,即拟合曲线与真实曲线的值的偏差较大(如用一次函数来拟合类三次函数的数据)②过拟合即过分拟合训练集中的数据,即训练集的损失函数低,得分高 过拟合对交叉测试集(或其他新数据集)的预测能力较差;即交叉测试集的损失函数高,...原创 2018-04-01 13:33:35 · 1013 阅读 · 0 评论