题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1358
题解:当且仅当len%(len-next[len])==0时,str[next[len]~len-1]为最小循环节。字符编号从0开始,那么if(i%(i-next[i])==0),则i前面的串为一个轮回串,其中轮回子串出现i/(i-next[i])次。
-----------------------
-----------------------
k m x j i
由上,next【i】=j,两段红色的字符串相等(两个字符串完全相等),s[k....j]==s[m....i]
设s[x...j]=s[j....i](xj=ji)
则可得,以下简写字符串表达方式
kj=kx+xj;
mi=mj+ji;
因为xj=ji,所以kx=mj,如下图所示
-------------
-------------
k m x j
看到了没,此时又重复上面的模型了,kx=mj,所以可以一直这样递推下去
所以可以推出一个重要的性质len-next[i]为此字符串的最小循环节(i为字符串的结尾),另外如果len%(len-next[i])==0,此字符串的最小周期就为len/(len-next[i]);
#include <stdio.h>
#include <string.h>
#define MAXN 1000001
char text[MAXN];
int next[MAXN];
void getNext()
{
int i=0,j=-1;
next[0]=-1;
while(text[i]!='\0')
{
if(j==-1||text[i]==text[j])
{
i++;
j++;
next[i]=j;
}
else
j=next[j];
}
}
int main()
{
int i,n,temp,cases=1;
while(scanf("%d",&n)&&n)
{
printf("Test case #%d\n",cases++);
scanf("%s",text);
getNext();
for(i=2;i<=n;++i)
{
temp=i-next[i];
if(i%temp==0&&i/temp>1)
printf("%d %d\n",i,i/temp);
}
printf("\n");
}
return 0;
}