1.研究背景
(1)大学生与职场新人的普遍迷茫:面对日益激烈的就业市场和多样化的职业选择,许多学生和初入职场者感到迷茫,缺乏科学的自我认知和清晰的职业方向,导致“入错行”、职业发展受阻等问题。
(2)自我认知工具的普及:MBTI作为全球最为流行的人格类型理论之一,因其通俗易懂、框架清晰,被广泛用于自我探索和团队建设。它为用户提供了一个理解自身行为偏好、能量来源和决策方式的宝贵视角。
(3)个性化推荐技术的成熟:随着大数据和人工智能技术的发展,个性化推荐算法已在电商、内容等领域取得巨大成功。将这种技术应用于职业规划领域,可以实现从“人找职位”到“职位找人”的智能化转变。
(4)传统职业咨询的局限性:传统的“一对一”职业咨询成本高、可及性差,难以规模化。开发一个在线的、基于数据的智能系统,可以以极低的成本为更广大的用户群体提供7x24小时的初步职业指导。
2.研究意义
2.1 理论意义:
(1)交叉学科的应用:将心理学理论(MBTI)与计算机科学技术(推荐算法、SpringBoot框架)进行深度融合,探索智能化心理评估与职业指导的新范式。
(2)模型优化:研究如何将非量化的心理学类型学数据,转化为计算机可处理、可计算的特征向量,并为职业推荐算法构建有效的用户画像模型。
2.2 实践意义:
(1)用户方面:提供一个低成本、高效率的自我认知和职业探索工具,帮助用户明确自身优势,发现潜在匹配的职业方向,减少择业盲目性,提升职业幸福感。
(2)高校与企业方面:为高校就业指导中心提供一个有力的辅助工具,提升就业指导工作的效率和科学性。为企业HR提供一个新颖的人才筛选和团队配置的参考视角。
3.功能模块
3.1 用户端模块
-
用户管理模块:
-
注册/登录
-
个人资料编辑与头像上传
-
测评记录与历史报告查看
-
-
MBTI测评模块:
-
在线测评:呈现标准化的93道题MBTI量表,支持在线答题测评。
-
动态报告生成:
-
基础类型解读:清晰展示用户的四维偏好(E/I, S/N, T/F, J/P)和最终类型(如INFP)。
-
维度深度解析:对每个维度的含义、典型表现、优势与潜在盲区进行说明。
-
人格画像:用雷达图等可视化图表展示用户在四个维度上的倾向性强度。
-
-
-
职业中心模块:
-
职业库:建立一个包含数百种现代职业的数据库,每个职业标签有其对应的MBTI推荐类型、职业描述、所需技能、发展前景等。
-
智能职业推荐:
-
匹配推荐:基于MBTI类型与职业的预设匹配规则,直接推荐高契合度的职业列表。
-
推荐结果排序:综合核心匹配度、职业热度等因素对推荐结果进行排序和展示。
-
-
职业详情页:可查看职业的详细信息。
-
3.2 管理端模块
-
仪表盘:展示系统关键数据,如总用户数、今日测评次数、热门职业排行等。
-
用户管理:查看所有用户列表,支持按MBTI类型、注册时间等条件筛选。
-
题库与报告管理:管理MBTI测评题目,解读内容。
-
职业库管理:对职业数据进行增删改查,为每个职业打上MBTI推荐标签、行业标签等。
-
推荐规则管理:配置和调整MBTI类型与职业的匹配权重规则。
4.技术栈选择
| 类别 | 技术选型 |
|---|---|
| 后端框架 | Spring Boot (核心框架)、MyBatis-Plus |
| 安全与权限 | Spring Security、JWT |
| 推荐算法 | 基于规则的推荐 |
| 数据库 | MySQL (主数据库,存储用户、题目、职业等结构化数据) |
| 前端技术 | Vue3 (构建用户界面)、Element Plus (UI组件库)、ECharts (数据可视化) |
| 项目管理与构建 | Maven / Gradle |
| 开发环境与工具 | JDK 8/11/17、IDE (IntelliJ IDEA / VS Code)、Postman (API调试) |
5.系统亮点
(1)可视化的报告查看:摒弃枯燥的文字报告,采用雷达图、人格画像等数据可视化技术,让用户对抽象的人格特质有更直观、深刻的理解。
(2)高可扩展的系统架构:采用SpringBoot微服务架构,未来可以轻松集成其他测评模型(如霍兰德职业兴趣测试),实现“MBTI+霍兰德”的复合型推荐,系统潜力巨大。
(3)人性化的交互设计:整个测评和推荐流程引导清晰,界面友好,并提供职业收藏、发展路径规划等闭环服务,提升用户粘性和体验。
823

被折叠的 条评论
为什么被折叠?



