- 博客(259)
- 资源 (1)
- 收藏
- 关注
原创 扩展:React 项目执行 yarn eject 后的 package.json 变化详解及参数解析
React 项目执行 yarn eject 后的 package.json 变化详解,package.json 参数解析。
2025-05-12 18:10:57
629
原创 扩展:React 项目执行 yarn eject 后的 scripts 目录结构详解
执行 yarn eject 后,create-react-app 会将 react-scripts 中的核心脚本抽出到本地的 scripts 目录中,便于开发者自定义开发、构建和测试流程。
2025-05-12 17:40:04
457
原创 扩展:React 项目执行 yarn eject 后的 config 目录结构详解
在 React 项目中执行 yarn eject 后,create-react-app 隐藏的 Webpack 配置将被暴露,生成 config/ 目录。该目录包含构建、开发和测试所需的配置文件,如 env.js(环境变量配置)、getHttpsConfig.js(HTTPS 配置)、modules.js(模块路径配置)、paths.js(项目路径管理)、webpack.config.js(Webpack 主配置)和 webpackDevServer.config.js(开发服务器配置)。
2025-05-12 17:27:31
907
原创 1. 使用 IntelliJ IDEA 创建 React 项目:创建 React 项目界面详解;配置 Yarn 为包管理器
本文详细介绍了如何使用 IntelliJ IDEA 创建 React 项目,并配置 Yarn 作为包管理器,如何使用 Yarn 重新安装项目依赖。
2025-05-12 15:24:09
1231
原创 Yarn vs npm 全面对比:谁才是最适合你的前端包管理器
在前端开发中,npm 和 Yarn 是两大主流包管理器,各有优劣。Yarn 由 Facebook 开发,安装速度更快,支持离线缓存,安全性强,适合中大型项目和 Monorepo。npm 由官方维护,适合个人项目和小型组件库,v7 后性能有所提升。两者均兼容 npm 仓库,但同一项目中不应混用。选择时需根据项目类型和团队规范决定。对于使用 React、Vue 等框架的开发者,推荐使用 Vite + Yarn 组合,以提升开发效率。
2025-05-12 14:44:37
434
原创 Java启动和停止jar文件sh脚本:1.自适应文件名方式启停 + 写死环境 启动;2.自适应文件名方式 + 命令行传参切换环境 启动;3.自适应文件名方式 + 支持追加参数 启动
本文介绍了两种Java启动和停止jar文件的sh脚本方案。第一种方案支持自适应文件名方式启停,并写死环境启动,适用于版本号变化的jar文件,启动时自动查找匹配的jar文件,无需手动修改文件名。第二种方案在第一种的基础上增加了命令行传参切换环境的功能,默认环境为test,支持运行时传参切换环境(如prod、dev)。两种方案均提供了启动脚本(start.sh)和停止脚本(stop.sh),启动脚本通过nohup启动服务,停止脚本通过PID终止服务。这些脚本简化了Java应用的部署和管理,提高了运维效率。
2025-05-09 10:06:46
402
原创 Nginx 配置参数全解版:Nginx 反向代理与负载均衡;Nginx 配置规范与 Header 透传实践指南;Nginx 配置参数详解
本篇文档从 反向代理 和 负载均衡 两个核心维度,全面介绍 Nginx 配置方式,细化到每一个可配置参数、其作用、可选值与推荐实践。
2025-04-24 11:29:00
1243
原创 docx4j解析HTML转Word异常:NoSuchFieldError: COURIER_BOLD_OBLIQUE;jaxb.suninternal.NamespacePrefixMapper
请注意,docx4j 的 11.x 系列使用 Jakarta XML Binding(jakarta.xml.bind),而 8.x 系列使用 Javax XML Binding(javax.xml.bind)。因此,确保您的项目依赖项与所使用的 Java 版本和 XML Binding 版本兼容。本案例使用 Java 8 进行集成,spring-boot-starter-parent 版本 2.7.9。
2025-04-16 10:08:28
979
原创 解决允许Traceroute探测:防火墙出站规则中禁用echo-reply(type 0)、time-exceeded(type 11)、destination-unreachable(type 3)
解决允许Traceroute探测:在防火墙出站规则中禁用echo-reply(type 0)、time-exceeded(type 11)、destination-unreachable(type 3)类型的ICMP包。
2025-03-12 11:22:03
698
原创 解决远程主机允许路由转发 【原理扫描】:将/proc/sys/net/ipv4/ip_forward 置为0
解决远程主机允许路由转发 【原理扫描】:将/proc/sys/net/ipv4/ip_forward 置为0。路由转发即当主机根据数据包的目的 IP 地址将发往本 IP 的包根据路由表继续转发数据包。这通常是路由器所要实现的功能。出于安全考虑,Linux 系统默认是禁止数据包转发。
2025-03-12 10:52:14
455
原创 解决ICMP timestamp请求响应漏洞:在您的防火墙上过滤外来的ICMP timestamp(类型 13)报文以及外出的ICMP timestamp回复报文
解决ICMP timestamp请求响应漏洞:在您的防火墙上过滤外来的ICMP timestamp(类型 13)报文以及外出的ICMP timestamp回复报文
2025-03-11 17:48:05
1113
原创 Windows 系统下安装 RabbitMQ 的详细指南
确保 RabbitMQ 的版本与已安装的 Erlang 版本兼容。您可以在 RabbitMQ 的 版本兼容性页面 查看详细信息。
2025-03-10 13:38:26
5775
原创 选型消息队列(MQ):ActiveMQ、RabbitMQ、RocketMQ、Kafka对比
ActiveMQ:适合轻量级消息传输,适用于传统企业应用。RabbitMQ:适用于高可靠性、低延迟的金融支付、IM、订单管理等业务。RocketMQ:兼顾高吞吐和高可靠性,适合电商、互联网金融、日志分析。Kafka:以高吞吐和低延迟著称,适用于日志分析、流式计算、大数据处理。希望本文能帮助你在不同场景下做出最佳 MQ 选型决策,提升系统的稳定性和扩展性。
2025-03-10 11:04:44
1176
原创 Windows 安装 ElasticSearch 及 Kibana,系统要求,启动 ElasticSearch,启动 Kibana,Kibana 开发工具发送请求到 ElasticSearch
ElasticSearch 是一个开源的分布式搜索和分析引擎,广泛应用于各种数据检索、实时分析和日志管理场景。它是基于 Apache Lucene 构建的,提供了比 Lucene 更强大的分布式能力和更高效的搜索与分析性能。ElasticSearch 在多个领域都有广泛的应用,包括日志数据分析、监控、实时搜索、推荐系统等。ElasticSearch 提供了强大的 RESTful API,便于与其他系统集成,并且能够处理各种规模的数据集,支持横向扩展,能够处理大数据量的高效查询。
2025-03-06 16:39:29
1094
原创 Elasticsearch 索引如何建立:索引结构设计, 需要分词的字段,需要索引但不分词的字段,仅存储但不索引的字段,经纬度字段的索引规则,复合字段的存储策略,copy_to聚合字段
在建立 Elasticsearch 索引时,需要根据字段的用途选择合适的 mapping 方式。主要从以下几个维度进行分析:是否需要分词:针对全文搜索的数据,通常需要分词(如文章内容、商品描述等)。是否用于搜索:决定字段是否需要被检索(如用户 ID 可能不用于搜索)。是否需要存储:部分字段仅用于索引,不需要存储(如日志数据的原始文本可能不存储)。是否需要聚合:如品牌、类别等字段可能用于聚合统计。是否唯一:如用户 ID、邮箱等唯一值可以不分词,且通常不需要索引。
2025-03-06 15:46:02
557
原创 安装IK分词器;IK分词器配置扩展词库:配置扩展字典-扩展词,配置扩展停止词字典-停用词
IK分词配置扩展词库:配置扩展字典-扩展词,配置扩展停止词字典-停用词。
2025-03-05 15:22:21
620
原创 ElasticSearch 分词器介绍及测试:Standard(标准分词器)、English(英文分词器)、Chinese(中文分词器)、IK(IK 分词器)
ElasticSearch 提供了多种内置的分词器(Analyzer),用于文本的分析和分词。分词器是文本分析的核心,决定了如何把输入的文本字符串分解成一个个“词项”(token)。不同的分词器适用于不同的语言和场景,如中文、英文等。本文将介绍常用的分词器及其应用。
2025-03-05 14:43:38
1217
原创 XPath常见用法示例,XPath基础语法
XPath(XML Path Language)是一种用于在XML文档中查找信息的语言,广泛应用于HTML解析、网页抓取、Web自动化测试等领域。本文将详细介绍XPath的基本语法,并提供常见用法示例,帮助您更好地理解和使用XPath。
2025-02-19 13:58:21
1150
原创 Scrapy报错:LookupError: unknown encoding: ‘b‘utf8‘‘;xpath解析报错:LookupError: unknown encoding: ‘b‘utf8‘‘
Scrapy报错:LookupError: unknown encoding: ‘b‘utf8‘‘;xpath解析报错:LookupError: unknown encoding: ‘b‘utf8‘‘
2025-02-19 13:56:04
527
1
原创 Scrapy安装,创建Scrapy项目,启动Scrapy爬虫
Scrapy 是一个功能强大且高效的 Python 爬虫框架,适合各种规模的网页数据抓取任务。无论是单个网页抓取,还是大规模的网站爬取,Scrapy 都能提供优秀的性能和易于扩展的架构。如果你正在寻找一种可靠的工具来进行数据采集、分析或自动化任务,Scrapy 无疑是一个非常好的选择。希望这篇博客能帮助你快速上手 Scrapy,开始自己的爬虫之旅!
2025-02-18 14:57:08
2001
原创 Python 爬虫框架对比与推荐
在进行 Python 爬虫开发时,选择合适的框架对项目的高效性与可维护性至关重要。每种框架都有其特定的优势和适用场景。本文将对常见的 Python 爬虫框架进行详细对比,帮助开发者根据需求做出选择。
2025-02-18 13:41:47
1683
1
原创 Ollama命令使用指南
Ollama 提供了一系列强大的命令,方便用户管理和运行语言模型。以上命令可以帮助你高效使用 Ollama,完成模型创建、运行、管理等操作。
2025-02-10 14:07:38
10332
原创 Ollama自定义安装路径,Ollama自定义模型下载目录
Ollama 默认安装位置是在C盘,默认下载的模型位置也在C盘,我们期望安装在其他盘符的目录下。
2025-02-10 13:47:45
3286
原创 Windows 中使用 Docker Desktop 部署 Open WebUI 做大模型可视化
Windows 中使用 Docker Desktop 部署 Open WebUI 做大模型可视化。Docker Desktop 版本:v4.37.1汉化文件:app-4.37-windows-x86.asar。
2025-02-08 21:41:49
3262
原创 Open WebUI:构建大模型与 Web 应用无缝对接的理想平台,Open WebUI 简介,Open WebUI 应用场景,Open WebUI 与大模型结合的优势,Open WebUI 使用示例
Open WebUI 是一个开源平台,旨在简化大模型(如 GPT、BERT 等)与 Web 应用的对接。它提供了一个灵活且可扩展的 Web 用户界面框架,使得开发者能够快速构建与复杂 AI 系统交互的 Web 应用。如果想深入了解 Open WebUI 的使用方法,可访问Open WebUI 官方文档,获得更多示例和 API 文档。Open WebUI 是构建与大规模语言模型(如 GPT、BERT 等)无缝对接的理想平台。
2025-02-08 16:14:46
4268
原创 Windows安装Docker Desktop的两种方式,命令行安装Docker Desktop,Docker Desktop汉化,Docker Desktop更换磁盘镜像存放目录及报错解决
使用Docker Desktop搭建本地大模型可视化界面。Docker Desktop 版本:v4.37.1汉化文件:app-4.37-windows-x86.asar。
2025-02-05 15:14:26
9548
5
原创 Ollama:一站式 AI 模型管理与交互平台,Ollama 简介,Ollama 的核心功能,Ollama 的使用场景
Ollama是一个开源的、基于容器化技术的 AI 模型管理与交互平台。它为开发者提供了一个统一的环境来管理、部署和与不同类型的 AI 模型进行互动。Ollama 支持各种常见的 AI 模型,包括但不限于大规模语言模型(如 GPT 系列)、计算机视觉模型、强化学习模型等。它的设计理念是简化 AI 模型的使用和集成,减少开发者的工作负担,让他们能够专注于应用层面的创新。
2025-02-05 15:10:24
950
原创 Windows系统中Docker可视化工具对比分析,Docker Desktop,Portainer,Rancher
本文将对几种常用的Windows系统下Docker可视化工具进行详细对比,帮助用户根据自己的需求选择合适的工具。内容包括每款软件的优缺点、适用场景、更新频率等,提供官网链接以便于下载和了解更多信息。
2025-01-31 17:29:42
2526
原创 NumPy;NumPy在数据分析中的应用;NumPy与其他库的搭配使用
NumPy 是 Python 的一个扩展库,主要用于处理高效的多维数组操作。它提供了一个叫做ndarray的数组对象,能够快速处理大量数值数据,同时提供了丰富的数学、统计和线性代数运算功能。NumPy 是许多数据科学库(如 SciPy、Pandas、Matplotlib)的基础,几乎所有的数据科学任务都离不开它。
2025-01-17 22:27:00
1346
原创 Jupyter;Jupyter特点;安装Jupyter;Conda安装Jupyter;Pip安装Jupyter;如何使用 Jupyter;启动Jupyter Notebook;Jupyter创建与运行
Jupyter 是一个开源的交互式计算平台,支持多种编程语言(如 Python、R、Julia 等)。它允许用户创建和共享文档,文档中可以包含代码、方程式、可视化和叙述文本。Jupyter Notebook 是 Jupyter 的核心工具,广泛应用于数据分析、机器学习、教育和科学计算等领域。
2025-01-17 16:28:22
859
原创 IPython;安装IPython;IPython使用场景;IPython魔法命令;IPython使用技巧
IPython 是一个增强型的交互式 Python 编程环境,最初设计用于改进标准 Python shell 的功能。它广泛应用于科学计算、数据分析和机器学习等领域,提供了许多便捷的特性。丰富的魔法命令强大的调试工具系统命令支持它是数据科学、教育和自动化领域的理想工具,也是 Jupyter Notebook 的基础组件之一。
2025-01-14 21:14:11
1038
原创 Anaconda安装教程及环境变量添加;Anaconda环境管理;Anaconda包管理;Anaconda常用命令
Anaconda 是一个流行的开源数据科学平台,集成了众多工具和库,为 Python 和 R 提供强大的开发与运行环境。通过 Anaconda,开发者可以轻松管理包和环境,同时利用大量预装的数据科学工具。Anaconda 是数据科学和机器学习领域的强大工具。借助其环境管理器和包管理器,开发者能够轻松管理项目中的复杂依赖关系。本篇文章通过介绍 Anaconda 的安装、环境与包管理,以及与 Python 的结合使用,旨在帮助读者快速上手。善用本文提供的命令和技巧,可以显著提升开发效率并优化工作流程。
2025-01-14 20:43:35
2356
原创 Python中的可变对象与不可变对象;Python中的六大标准数据类型哪些属于可变对象,哪些属于不可变对象
在Python中,数据类型分为可变对象和不可变对象,它们在内存中的表现方式有所不同,特别是在进行数据修改时,是否会影响对象的内存地址。本文将通过Python中的六大标准数据类型(数字、字符串、列表、元组、集合、字典)来分析哪些属于可变对象,哪些属于不可变对象。
2025-01-08 21:20:25
639
原创 Python 中深拷贝和浅拷贝
在 Python 中,深拷贝(Deep Copy)和浅拷贝(Shallow Copy)是两种常见的对象复制方式。它们之间的主要区别在于拷贝的对象以及拷贝过程中引用的处理方式。
2025-01-08 09:53:13
564
原创 Python 中的三种字符串格式化方式:% 格式化字符、str.format方法、f-string函数
宽度是指输出内容占用的字符数(包括空格、符号等),主要用于对齐输出结果。宽度不足时,默认用空格填充,特殊情况下可以指定用0或其他字符填充。print("%5d" % 12) # 宽度为5,右对齐,输出: " 12" (前面填充3个空格)print("%-5d" % 12) # 宽度为5,左对齐,输出: "12 " (后面填充3个空格)print("%05d" % 12) # 宽度为5,右对齐,前面用0填充,输出: "00012"特性%格式化f-string(f 函数)简洁性较简洁,但不直观。
2025-01-07 14:23:36
2840
1
原创 2025最详细 Windows 系统安装 Python 教程
Python 是一门广泛使用的编程语言,适用于多种开发任务。本文将详细介绍如何在 Windows 系统上安装 Python。是 Python 的包管理工具,它帮助您安装 Python 包。虚拟环境可以帮助您为不同的项目创建独立的 Python 环境,避免不同项目之间的依赖冲突。会将 Python 添加到系统环境变量中,允许您在命令行中直接使用。激活后,您会看到命令行提示符前出现。在命令行中输入以下命令,验证。在虚拟环境激活后,您可以使用。,表示虚拟环境已成功激活。在安装界面,确保选中。
2025-01-07 10:11:40
2866
原创 Python 版本变更历史及版本选择指南
Python语言经历了多个版本的迭代,每个版本都有不同的特点和改进。对于新项目,推荐使用Python 3.x系列中的最新版本,因为它提供了更多的特性和更好的性能。同时,要注意版本的兼容性,避免过早依赖新特性,影响代码的可移植性。
2025-01-06 19:28:39
4202
1
原创 Java源文件反编译成汇编语言:1.javac将Java源文件编译为.class文件,2.javap将.class文件反编译成汇编语言;.class文件结构
Java源文件反编译成汇编语言:1.javac将Java源文件编译为.class文件,2.javap将.class文件反编译成汇编语言
2024-12-16 12:53:14
1226
原创 Java中的常量池;静态常量池(Static Constant Pool);运行时常量池(Runtime Constant Pool);字符串常量池(String Constant Pool)
在 Java 中,常量池是一个用于存储常量的机制,帮助提高内存效率和运行时性能。常量池是 JVM 在编译和运行时优化的一个重要特性,它根据不同的场景可以分为 静态常量池、运行时常量池 和 字符串常量池。
2024-12-16 12:52:20
1273
原创 显卡解码能力查询;GPU 视频参数详解:4K 和 8K 视频播放能力、AI 生成视频能力;分辨率标准:FHD、4K 和 8K 的区别
画质效果适用范围FHD:常见标准,适合日常使用。4K:更适合大屏幕和对画质有较高要求的用户。8K:未来高端显示设备的发展方向,适合需要极高分辨率的专业场景。
2024-11-11 12:05:56
5025
html5基于Bootstrap响应式企业博客后台模板
2022-04-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人