Can‘t detach views in-place. Use detach() instead. If you are using DistributedDataParallel (DDP) fo

Can’t detach views in-place. Use detach() instead. If you are using DistributedDataParallel (DDP) for training, and gradient_as_bucket_view is set as True, gradients are views of DDP buckets, and hence detach_() cannot be called on these gradients. To fix this error, please refer to the Optimizer.zero_grad() function in torch/optim/optimizer.py as the solution

这个错误信息主要是关于使用 PyTorch 的 DistributedDataParallel (DDP) 进行分布式训练时,梯度视图无法就地分离的问题。具体来说,当 gradient_as_bucket_view 设置为 True 时,梯度实际上是 DDP 桶的视图,因此不能直接调用 detach_() 方法。

下面是错误信息的分析和解决方案:

  1. 错误信息

    • Can’t detach views in-place: 无法就地分离视图。
    • Use detach() instead: 请改用 detach() 方法。
    • If you are using DistributedDataParallel (DDP) for training, and gradient_as_bucket_view is set as True, gradients are views of DDP buckets, and hence detach_() cannot be called on these gradients:
      • 如果您在训练中使用 DistributedDataParallel (DDP),并且 gradient_as_bucket_view 设置为 True,那么梯度实际上是 DDP 桶的视图,因此不能在这些梯度上调用 detach_() 方法。
  2. 解决方案

    • 请参考 torch/optim/optimizer.py 中的 Optimizer.zero_grad() 函数:
      • 这个提示建议查看 torch/optim/optimizer.py 文件中的 Optimizer.zero_grad() 函数。

一般来说,detach() 方法用于创建一个新的张量,该张量与原始计算图分离,而 detach_() 是一个就地操作。由于在 DDP 模式下,梯度是 DDP 桶的视图,就地操作会影响这些视图,从而引发错误。

解决方案步骤

  1. 检查 Optimizer.zero_grad() 实现
    查看 PyTorch 源代码中的 Optimizer.zero_grad() 实现,确保使用正确的梯度清零方式。

    def zero_grad(self, set_to_none: bool = False):
        for p in self.param_groups:
            for param in p['params']:
                if param.grad is not None:
                    if set_to_none:
                        param.grad = None
                    else:
                        if param.grad.grad_fn is not None:
                            param.grad.detach_()
                        else:
                            param.grad.requires_grad_(False)
                        param.grad.zero_()
    
  2. 避免使用 detach_()
    根据错误信息,不要在梯度上使用 detach_(),而是使用 detach() 来创建一个新的张量。

    def zero_grad(self, set_to_none: bool = False):
        for p in self.param_groups:
            for param in p['params']:
                if param.grad is not None:
                    if set_to_none:
                        param.grad = None
                    else:
                        if param.grad.grad_fn is not None:
                            param.grad = param.grad.detach()
                        else:
                            param.grad.requires_grad_(False)
                        param.grad.zero_()
    
  3. 设置 gradient_as_bucket_viewFalse(如果可行):
    如果可以,尝试在初始化 DDP 时将 gradient_as_bucket_view 设置为 False

    model = torch.nn.parallel.DistributedDataParallel(model, gradient_as_bucket_view=False)
    
  4. 确保使用正确的 PyTorch 版本
    确保使用的 PyTorch 版本中包含了适当的修复和改进。如果存在版本问题,尝试更新到最新的 PyTorch 版本。

通过上述步骤,可以避免 detach_() 相关的错误,同时保证梯度正确地在 DDP 模式下进行清零操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值