Can’t detach views in-place. Use detach() instead. If you are using DistributedDataParallel (DDP) for training, and gradient_as_bucket_view is set as True, gradients are views of DDP buckets, and hence detach_() cannot be called on these gradients. To fix this error, please refer to the Optimizer.zero_grad() function in torch/optim/optimizer.py as the solution
这个错误信息主要是关于使用 PyTorch 的 DistributedDataParallel (DDP)
进行分布式训练时,梯度视图无法就地分离的问题。具体来说,当 gradient_as_bucket_view
设置为 True
时,梯度实际上是 DDP 桶的视图,因此不能直接调用 detach_()
方法。
下面是错误信息的分析和解决方案:
-
错误信息:
- Can’t detach views in-place: 无法就地分离视图。
- Use detach() instead: 请改用
detach()
方法。 - If you are using DistributedDataParallel (DDP) for training, and gradient_as_bucket_view is set as True, gradients are views of DDP buckets, and hence detach_() cannot be called on these gradients:
- 如果您在训练中使用
DistributedDataParallel (DDP)
,并且gradient_as_bucket_view
设置为True
,那么梯度实际上是 DDP 桶的视图,因此不能在这些梯度上调用detach_()
方法。
- 如果您在训练中使用
-
解决方案:
- 请参考 torch/optim/optimizer.py 中的 Optimizer.zero_grad() 函数:
- 这个提示建议查看
torch/optim/optimizer.py
文件中的Optimizer.zero_grad()
函数。
- 这个提示建议查看
- 请参考 torch/optim/optimizer.py 中的 Optimizer.zero_grad() 函数:
一般来说,detach()
方法用于创建一个新的张量,该张量与原始计算图分离,而 detach_()
是一个就地操作。由于在 DDP 模式下,梯度是 DDP 桶的视图,就地操作会影响这些视图,从而引发错误。
解决方案步骤
-
检查
Optimizer.zero_grad()
实现:
查看 PyTorch 源代码中的Optimizer.zero_grad()
实现,确保使用正确的梯度清零方式。def zero_grad(self, set_to_none: bool = False): for p in self.param_groups: for param in p['params']: if param.grad is not None: if set_to_none: param.grad = None else: if param.grad.grad_fn is not None: param.grad.detach_() else: param.grad.requires_grad_(False) param.grad.zero_()
-
避免使用
detach_()
:
根据错误信息,不要在梯度上使用detach_()
,而是使用detach()
来创建一个新的张量。def zero_grad(self, set_to_none: bool = False): for p in self.param_groups: for param in p['params']: if param.grad is not None: if set_to_none: param.grad = None else: if param.grad.grad_fn is not None: param.grad = param.grad.detach() else: param.grad.requires_grad_(False) param.grad.zero_()
-
设置
gradient_as_bucket_view
为False
(如果可行):
如果可以,尝试在初始化 DDP 时将gradient_as_bucket_view
设置为False
。model = torch.nn.parallel.DistributedDataParallel(model, gradient_as_bucket_view=False)
-
确保使用正确的 PyTorch 版本:
确保使用的 PyTorch 版本中包含了适当的修复和改进。如果存在版本问题,尝试更新到最新的 PyTorch 版本。
通过上述步骤,可以避免 detach_()
相关的错误,同时保证梯度正确地在 DDP 模式下进行清零操作。