自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 红外小目标:基于深度学习的红外小目标检测研究方法(持续更新中)

深度学习红外小目标研究现状2019年TBC-Net linkTBC-net分为目标特征提取模块TEM和语义约束模块SCM,分别用于从红外图像中提取小目标和对训练过程中提取的目标图像进行分类。TEM模块进行目标提取,TEM模块为轻量级的图像分割网络,利用模块压缩算法实现了上采用和下采样,形成了编解码结构。SCM模块对提取的小目标进行分类级别的约束,由于红外小目标没有形状和类别的语义信息,这篇文章利用小目标的数量对目标进行约束。此外,这篇文章还利用了合成的数据,通过在背景图像上添加目标信息并加

2020-10-20 16:01:11 17924 9

翻译 论文翻译:Learning Invariant Representations and Risks for Semi-supervised Domain Adaptation

摘要监督学习的成功依赖于假设训练和测试数据来自相同的潜在分布,这在实践中往往是无效的,因为潜在的分布转移。鉴于此,现有的非监督域自适应方法大多集中于实现域不变表示和小源域误差。然而,最近的研究表明,这并不足以保证在目标域上有良好的泛化,事实上,在标签分布位移下是有害的。此外,在许多实际应用中,从目标领域获取少量标记数据并使用它们来促进源数据的模型训练往往是可行的。受上述观察的启发,本文第一次提出了一个在半监督域自适应(semi-supervised domain adaptive,Semi-DA)的设置下

2020-10-27 20:47:27 1167 2

原创 红外小目标:评价指标

红外小目标的评价指标为了评价不同红外小目标检测方法的背景抑制和增强目标效果,通常采用**信杂比(SCR)、信杂比增益(SCRG)、背景抑制因子(BSF)**作为评价指标。小目标的SCR越高,越容易被检测到,SCRG反映了目标的输入输出相对于背景的增强程度,也可以用来描述小目标检测的难度。SCR=∣μt−μb∣σbS C R=\frac{\left|\mu_{t}-\mu_{b}\right|}{\sigma_{b}}SCR=σb​∣μt​−μb​∣​, SCRG=SCRoutSCRinS C R G=

2020-10-21 21:55:16 5589 8

原创 小目标检测:基于深度学习的小目标检测方法

基于深度学习的小目标检测方法小目标检测的难点:分辨率低、信息少,噪音多、图像模糊解决方法:图像金字塔、特征金字塔、对包含小目标的图像进行oversampling、对小目标进行复制粘贴操作(不遮挡原有目标,有旋转和缩放)摘抄:深度学习检测小目标常用方法汇总 link特征融合的SSD:SSD使用特征金字塔把最浅层的特征用到小目标检测上,因为浅层的感受野小,感受野的尺寸正好和小目标匹配。但是浅层的特征缺少语义信息,语义信息会影响检测器判断检测区域是目标 (object) 还是背景 (background

2020-10-21 16:17:36 2336

原创 红外小目标:简单笔记

红外小目标检测应用背景解决难点现有方法传统方法深度学习的方法数据集评价指标应用背景红外小目标检测是红外搜索和跟着的关键技术之一,在海上监控系统,预警系统应用广泛,解决难点红外小目标像素与整张图的像素比非常小。红外辐射的能量在距离上显著衰减,使物体看起来非常暗淡。因此红外小目标很容易淹没在背景杂波和传感器噪声中。小目标非常稀疏,导致了目标区域和背景区域之间的严重不平衡。现有方法传统方法低秩稀疏的块图像红外小目标检测(IPI,Infrared Patch-Image Model for S

2020-10-15 20:55:14 7312 27

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除